Christos K. Filelis-Papadopoulos , John P. Morrison , Philip O’Reilly
{"title":"Adaptive multilayer extreme learning machines","authors":"Christos K. Filelis-Papadopoulos , John P. Morrison , Philip O’Reilly","doi":"10.1016/j.matcom.2024.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>Extreme learning machines is a neural network type that has been utilized in tasks such as regression and classification, due to their efficient training process, which is based on pseudoinverse matrices and randomized weights, avoiding the computationally intensive backpropagation. In order to further improve their performance and reduce their complexity with respect to number of required hyperparameters, especially in the case of multiple layer architectures, a novel multilayer adaptive approach, based on residual networks, is proposed. This approach constructs the network iteratively with respect to error minimization and parsimony using a recursive pseudoinverse matrix framework. A new block approach, using mixed precision arithmetic and Graphics Processing Units (GPU) is proposed. The proposed technique is coupled with a new adaptive penalty criterion to ensure adequate numbers of neurons are included in each layer, while avoiding highly correlated basis. Adaptive regularization, along with scaling, is also incorporated to ensure Symmetric Positive Definiteness (SPD) of the Gram matrix. Several random number distributions for the proposed approach are examined and discussed. Handling of large datasets is discussed and a new batch variant is proposed. The proposed scheme is evaluated for regression and classification tasks in a multitude of datasets and is compared with other neural network architectures.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"231 ","pages":"Pages 71-98"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004750","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Extreme learning machines is a neural network type that has been utilized in tasks such as regression and classification, due to their efficient training process, which is based on pseudoinverse matrices and randomized weights, avoiding the computationally intensive backpropagation. In order to further improve their performance and reduce their complexity with respect to number of required hyperparameters, especially in the case of multiple layer architectures, a novel multilayer adaptive approach, based on residual networks, is proposed. This approach constructs the network iteratively with respect to error minimization and parsimony using a recursive pseudoinverse matrix framework. A new block approach, using mixed precision arithmetic and Graphics Processing Units (GPU) is proposed. The proposed technique is coupled with a new adaptive penalty criterion to ensure adequate numbers of neurons are included in each layer, while avoiding highly correlated basis. Adaptive regularization, along with scaling, is also incorporated to ensure Symmetric Positive Definiteness (SPD) of the Gram matrix. Several random number distributions for the proposed approach are examined and discussed. Handling of large datasets is discussed and a new batch variant is proposed. The proposed scheme is evaluated for regression and classification tasks in a multitude of datasets and is compared with other neural network architectures.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.