{"title":"SBA*: An efficient method for 3D path planning of unmanned vehicles","authors":"Rustu Akay , Mustafa Yusuf Yildirim","doi":"10.1016/j.matcom.2024.12.015","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, researchers have stated that the movement of unmanned vehicles (UVs) in 3D environments is more complex compared to 2D due to extra height and depth dimensions, and they have focused on the development of UV technology in this direction. Especially in path planning problems, studies on different parameters such as time, distance and energy consumption have gained importance. This paper focuses on path planning efficiency in complex 3D environments and proposes a method called Segment Based A* (SBA*), which runs on graphs created using random nodes. In this method, the path initially planned with A* on a global graph is divided into segments, and new local graphs are created on these segments for more efficient path planning. Extensive simulations in both 2D and 3D environments with various obstacle configurations demonstrate that SBA* significantly outperforms traditional algorithms in terms of key performance metrics including path length, total rotation angle, number of sharp turns and smoothness ratio. These improvements indicate that SBA* not only enhances path efficiency but also considerably reduces energy consumption, making it a valuable contribution to practical applications in UV technology.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"231 ","pages":"Pages 294-317"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004889","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, researchers have stated that the movement of unmanned vehicles (UVs) in 3D environments is more complex compared to 2D due to extra height and depth dimensions, and they have focused on the development of UV technology in this direction. Especially in path planning problems, studies on different parameters such as time, distance and energy consumption have gained importance. This paper focuses on path planning efficiency in complex 3D environments and proposes a method called Segment Based A* (SBA*), which runs on graphs created using random nodes. In this method, the path initially planned with A* on a global graph is divided into segments, and new local graphs are created on these segments for more efficient path planning. Extensive simulations in both 2D and 3D environments with various obstacle configurations demonstrate that SBA* significantly outperforms traditional algorithms in terms of key performance metrics including path length, total rotation angle, number of sharp turns and smoothness ratio. These improvements indicate that SBA* not only enhances path efficiency but also considerably reduces energy consumption, making it a valuable contribution to practical applications in UV technology.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.