{"title":"Detection and Mitigation of Clock Deviation in the Verification & Validation of Drone-aided Lifting Operations","authors":"Abdelhakim Baouya , Brahim Hamid , Otmane Ait Mohamed , Saddek Bensalem","doi":"10.1016/j.adhoc.2024.103745","DOIUrl":null,"url":null,"abstract":"<div><div>Modern Cyber–Physical systems rely on diverse computation logic, communication protocols, and technologies and are susceptible to environmental phenomena and production errors that can significantly impact system behavior. The resilience of these systems necessitates considering factors during the high-level design stages to enable accurate functional forecasting and correctness. This paper presents an approach that models clock deviation’s effects within physical and environmental conditions to perform verification & validation in the context of Unmanned Aerial Vehicle domain (UAV). We employ the OMNeT++ simulation framework to define the system’s behavior in a components–port–connectors fashion. The approach leverages Probabilistic Decision Tree rules derived from the OMNeT++ simulation chart. The resulting rule-based model is then interpreted in the PRISM language for automated model verification. To validate our approach, we investigate how clock deviations influence the correctness of drone-aided lifting operations which is our primary focus, serving as a representative application scenario. The research examines clock deviations from multiple sources, including conformance to standard specifications, product manufacturing variations, operational failures, humidity, and operating temperature changes. Our examination explores the potential of validation through simulation and model checking while also studying the approach’s effectiveness through a sensitive analysis. Furthermore, the approach is demonstrated in the context of robot orchestration and water dam infrastructure for generalization purposes in Cyber–Physical Systems modeling. The research highlights the approach’s effectiveness by demonstrating its applicability, including those that incorporate degradation factors.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"170 ","pages":"Article 103745"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524003561","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Modern Cyber–Physical systems rely on diverse computation logic, communication protocols, and technologies and are susceptible to environmental phenomena and production errors that can significantly impact system behavior. The resilience of these systems necessitates considering factors during the high-level design stages to enable accurate functional forecasting and correctness. This paper presents an approach that models clock deviation’s effects within physical and environmental conditions to perform verification & validation in the context of Unmanned Aerial Vehicle domain (UAV). We employ the OMNeT++ simulation framework to define the system’s behavior in a components–port–connectors fashion. The approach leverages Probabilistic Decision Tree rules derived from the OMNeT++ simulation chart. The resulting rule-based model is then interpreted in the PRISM language for automated model verification. To validate our approach, we investigate how clock deviations influence the correctness of drone-aided lifting operations which is our primary focus, serving as a representative application scenario. The research examines clock deviations from multiple sources, including conformance to standard specifications, product manufacturing variations, operational failures, humidity, and operating temperature changes. Our examination explores the potential of validation through simulation and model checking while also studying the approach’s effectiveness through a sensitive analysis. Furthermore, the approach is demonstrated in the context of robot orchestration and water dam infrastructure for generalization purposes in Cyber–Physical Systems modeling. The research highlights the approach’s effectiveness by demonstrating its applicability, including those that incorporate degradation factors.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.