An analysis of the N-methyl-2-pyrrolidone: water complex using computational and matrix isolation FTIR methods

IF 1.4 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Journal of Molecular Spectroscopy Pub Date : 2025-02-01 DOI:10.1016/j.jms.2025.111985
Isiah M. McMurray, Joseph R. Nettles, Aaron W. Uzelmeier, Jeremy A. Swartz, Josh J. Newby
{"title":"An analysis of the N-methyl-2-pyrrolidone: water complex using computational and matrix isolation FTIR methods","authors":"Isiah M. McMurray,&nbsp;Joseph R. Nettles,&nbsp;Aaron W. Uzelmeier,&nbsp;Jeremy A. Swartz,&nbsp;Josh J. Newby","doi":"10.1016/j.jms.2025.111985","DOIUrl":null,"url":null,"abstract":"<div><div>The weakly bound complexes of <em>N</em>-methyl-2-pyrrolidone (NMP) and water have been analyzed using a combination of computational methods and matrix isolation FTIR spectroscopy. The computational analysis utilized density functional and perturbation theory methods to determine the lowest energy geometries and vibrational frequencies of NMP: H<sub>2</sub>O. This analysis yielded four unique structures that could be differentiated by their preferred intermolecular interaction. Two structures formed via relatively strong OH⋯O hydrogen bonds, one structure was stabilized via OH⋯N interactions, and the fourth structure was observed to interact through relatively weak CH⋯O features. The interaction motifs were verified using atoms in molecules analysis and the noncovalent interaction index method. Spectra of NMP with H<sub>2</sub>O and its isotopologues showed clear evidence of two unique structures in the cryogenic nitrogen matrix. Both of these structures formed through OH⋯O interactions from the water to the carbonyl oxygen of NMP. This structural assignment was supported by the calculated vibrational shifts seen in NMP: H<sub>2</sub>O. A detailed analysis and discussion of this assignment is provided.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"408 ","pages":"Article 111985"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285225000013","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The weakly bound complexes of N-methyl-2-pyrrolidone (NMP) and water have been analyzed using a combination of computational methods and matrix isolation FTIR spectroscopy. The computational analysis utilized density functional and perturbation theory methods to determine the lowest energy geometries and vibrational frequencies of NMP: H2O. This analysis yielded four unique structures that could be differentiated by their preferred intermolecular interaction. Two structures formed via relatively strong OH⋯O hydrogen bonds, one structure was stabilized via OH⋯N interactions, and the fourth structure was observed to interact through relatively weak CH⋯O features. The interaction motifs were verified using atoms in molecules analysis and the noncovalent interaction index method. Spectra of NMP with H2O and its isotopologues showed clear evidence of two unique structures in the cryogenic nitrogen matrix. Both of these structures formed through OH⋯O interactions from the water to the carbonyl oxygen of NMP. This structural assignment was supported by the calculated vibrational shifts seen in NMP: H2O. A detailed analysis and discussion of this assignment is provided.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
21.40%
发文量
94
审稿时长
29 days
期刊介绍: The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.
期刊最新文献
Toward less ambiguous vibrational spectroscopic notations for hydrogen-bonded water and methanol clusters Extending the rotational spectrum of cyclopentadiene towards higher frequencies and vibrational states An analysis of the N-methyl-2-pyrrolidone: water complex using computational and matrix isolation FTIR methods Rotational spectrum of trifluoroacetic acid: Extension of the measurements by chirped-pulse spectroscopy Rotational analyses of two transitions of WS near 13,100 cm−1, and further deperturbation analysis of the [15.30]1 – X 3Σ−0+ transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1