Autocyclic switching processes and architecture of lobes in river-dominated lacustrine deltas

Zhen-Hua Xu , Sheng-He Wu , Piret Plink-Björklund , Tao Zhang , Da-Li Yue , Qi-Hao Qian , Qing Li , Wen-Jie Feng
{"title":"Autocyclic switching processes and architecture of lobes in river-dominated lacustrine deltas","authors":"Zhen-Hua Xu ,&nbsp;Sheng-He Wu ,&nbsp;Piret Plink-Björklund ,&nbsp;Tao Zhang ,&nbsp;Da-Li Yue ,&nbsp;Qi-Hao Qian ,&nbsp;Qing Li ,&nbsp;Wen-Jie Feng","doi":"10.1016/j.jop.2024.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>River-dominated lacustrine deltas typically consist of multiple lobes due to autogenic lobe switching that occurs over short time scales. However, the switching patterns of multiple lobes in these deltas remain poorly understood, and the architectural features attributed to lobe switching are also lacking. By integrating Delft3D simulations, flume experiments, and modern deposit analysis, we proposed that autogenic lobe switching follows a cyclic pattern. Autocyclicity begins with the formation of an offshore lobe and concludes after a series of longshore lobe growth events, marked by longshore avulsions occurring along the sides of offshore distributary channels. Longshore avulsions follow a sequence that usually occurs earlier distally than proximally and subsequently occurs on one longshore side and then on the other side. Each lobe begins with rapid growth, which gradually slows and then stops once a channel avulsion is influenced by the backwater effect that triggers lobe switching. Three signals indicate lobe switching: a decrease in progradation rate, foreset slope steepening coupled with topset slope gentling, and the deposition of mud-dominated sediments. The number of autocyclic events never exceeds seven. The first two autocyclicities contribute to more than 55% of delta length and 70% of delta area. The lobes are separated by 1–6 stages of mud-dominated accretion beds that exhibit a downstream-inclined shape and convex-up or lateral overlapping pattern. This study conducts a coupled growth-geometric assessment to establish an architectural pattern for river-dominated lacustrine deltas. This architectural pattern offers valuable insights into predicting sandy lobe distribution in river-dominated lacustrine delta reservoirs, and the architecture of muddy accretion beds aids in predicting the rule of oil–water movement and distribution of remaining oil.</div></div>","PeriodicalId":100819,"journal":{"name":"Journal of Palaeogeography","volume":"14 1","pages":"Pages 126-140"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Palaeogeography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095383624001299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

River-dominated lacustrine deltas typically consist of multiple lobes due to autogenic lobe switching that occurs over short time scales. However, the switching patterns of multiple lobes in these deltas remain poorly understood, and the architectural features attributed to lobe switching are also lacking. By integrating Delft3D simulations, flume experiments, and modern deposit analysis, we proposed that autogenic lobe switching follows a cyclic pattern. Autocyclicity begins with the formation of an offshore lobe and concludes after a series of longshore lobe growth events, marked by longshore avulsions occurring along the sides of offshore distributary channels. Longshore avulsions follow a sequence that usually occurs earlier distally than proximally and subsequently occurs on one longshore side and then on the other side. Each lobe begins with rapid growth, which gradually slows and then stops once a channel avulsion is influenced by the backwater effect that triggers lobe switching. Three signals indicate lobe switching: a decrease in progradation rate, foreset slope steepening coupled with topset slope gentling, and the deposition of mud-dominated sediments. The number of autocyclic events never exceeds seven. The first two autocyclicities contribute to more than 55% of delta length and 70% of delta area. The lobes are separated by 1–6 stages of mud-dominated accretion beds that exhibit a downstream-inclined shape and convex-up or lateral overlapping pattern. This study conducts a coupled growth-geometric assessment to establish an architectural pattern for river-dominated lacustrine deltas. This architectural pattern offers valuable insights into predicting sandy lobe distribution in river-dominated lacustrine delta reservoirs, and the architecture of muddy accretion beds aids in predicting the rule of oil–water movement and distribution of remaining oil.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D morphology of crab (Macrophthalmus japonicus) burrows from the Pearl River Delta front, China: The physicochemical factors, with implications for the rock record Mass organic matter accumulation induced by rapid redox variations in lakes: Evidence from the Miaoxi area, Bohai Bay Basin, China A comparison of the proto-dolomite induced by cyanobacteria and halophilic bacteria: implications for dolomite-inducing microbe identification Sedimentary facies analysis, palaeogeography, and reservoir quality of the Middle-Upper Cambrian Xixiangchi Formation in southeast Sichuan Basin, southwest China Facilitation of microbialite development by continental weathering in the Cambrian Zhangxia Formation, southern North China Block
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1