The GbbZIP41 transcription factor participates in terpene trilactones biosynthesis in Ginkgo biloba L.

IF 5.4 Q1 PLANT SCIENCES Current Plant Biology Pub Date : 2025-01-31 DOI:10.1016/j.cpb.2025.100449
Nuo Wang, Yi Tu, Sirui Zeng, Jiabao Ye, Weiwei Zhang, Feng Xu, Yongling Liao
{"title":"The GbbZIP41 transcription factor participates in terpene trilactones biosynthesis in Ginkgo biloba L.","authors":"Nuo Wang,&nbsp;Yi Tu,&nbsp;Sirui Zeng,&nbsp;Jiabao Ye,&nbsp;Weiwei Zhang,&nbsp;Feng Xu,&nbsp;Yongling Liao","doi":"10.1016/j.cpb.2025.100449","DOIUrl":null,"url":null,"abstract":"<div><div>Terpene trilactones (TTLs) are important secondary metabolites in ginkgo tree (<em>Ginkgo biloba</em>), which play a crucial role in the treatment of human cardiovascular disease and prevention of thrombosis, and have been widely used in food, medicine and health products. However, there are few studies on the transcriptional modulation of TTLs biosynthesis and gene regulatory network of TTLs biosynthesis remains unclear. Here, we screened the transcription factor GbbZIP41 that may be involved in the biosynthesis of TTLs and verified its function by transgenic technology. The results showed that GbbZIP41 is a protein located in the nucleus and encodes 477 amino acids, which is highly expressed in <em>G. biloba</em> leaves. The analysis of total terpene content and <em>GbbZIP41</em> gene expression in <em>G. biloba</em> leaves showed the opposite trend. In addition, the overexpression of <em>GbbZIP41</em> gene in tobacco reduced the content of terpenoids and down-regulated the enzyme genes of MVA pathway and MEP pathway. Therefore, these results suggested that GbbZIP41 negatively regulates the biosynthesis of TTLs by inhibiting key enzyme genes in the TTLs synthesis pathway.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"41 ","pages":"Article 100449"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662825000179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Terpene trilactones (TTLs) are important secondary metabolites in ginkgo tree (Ginkgo biloba), which play a crucial role in the treatment of human cardiovascular disease and prevention of thrombosis, and have been widely used in food, medicine and health products. However, there are few studies on the transcriptional modulation of TTLs biosynthesis and gene regulatory network of TTLs biosynthesis remains unclear. Here, we screened the transcription factor GbbZIP41 that may be involved in the biosynthesis of TTLs and verified its function by transgenic technology. The results showed that GbbZIP41 is a protein located in the nucleus and encodes 477 amino acids, which is highly expressed in G. biloba leaves. The analysis of total terpene content and GbbZIP41 gene expression in G. biloba leaves showed the opposite trend. In addition, the overexpression of GbbZIP41 gene in tobacco reduced the content of terpenoids and down-regulated the enzyme genes of MVA pathway and MEP pathway. Therefore, these results suggested that GbbZIP41 negatively regulates the biosynthesis of TTLs by inhibiting key enzyme genes in the TTLs synthesis pathway.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
期刊最新文献
Antarctic fungal inoculation enhances drought tolerance and modulates fruit physiology in blueberry plants Comprehensive allelic series analysis uncovers the novel function of the tomato FALSIFLORA gene in the cessation of floral meristem activity Comprehensive genome-wide expression analysis of NLP transcription factors elucidates their crucial role in enhancing nitrogen response in wheat (Triticum aestivum L.) Twenty years of AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) gene family research – Their potential in crop improvement RTR_Lite_MobileNetV2: A lightweight and efficient model for plant disease detection and classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1