Plastic hotspot areas in riverine habitats: Riparian vegetation diversity and structure entrap riverine plastics

IF 5.4 Q1 PLANT SCIENCES Current Plant Biology Pub Date : 2025-01-26 DOI:10.1016/j.cpb.2025.100450
Luca Gallitelli , Maurizio Cutini , Giulia Cesarini , Massimiliano Scalici
{"title":"Plastic hotspot areas in riverine habitats: Riparian vegetation diversity and structure entrap riverine plastics","authors":"Luca Gallitelli ,&nbsp;Maurizio Cutini ,&nbsp;Giulia Cesarini ,&nbsp;Massimiliano Scalici","doi":"10.1016/j.cpb.2025.100450","DOIUrl":null,"url":null,"abstract":"<div><div>Plastics are a significant environmental problem, accumulating in ecosystems and causing harmful effects. While macroplastics in rivers have only recently gained attention, most studies focus on their transport to the sea, neglecting the fact that plastics often remain within fluvial systems. Previous research has primarily considered abiotic factors in this transport process. However, recent findings indicate that vegetation plays a crucial role in trapping plastics in urban and lowland watercourses. The role and structure of riparian vegetation in plastic entrapment are poorly understood. This study investigates the relationship between vegetation structure and plastic entrapment applying the 3D Vegetation Index (3DVI) to quantify vegetation complexity and its capacity to trap plastics. Field data on plastics and vegetation were collected from six rivers in central Italy across three riverine zones. Results show a significant correlation between macroplastics trapped in vegetation and vegetation structure, with denser and more diverse plant communities trapping more plastics. Particularly, a significant regression between 3DVI and plastics in vegetation was observed only in the lower river zone. The higher the 3DVI value, the more complex the vegetation, indicating greater plastic trapping efficiency. These findings suggest that biotic factors, particularly vegetation structure, are important variables for driving riverine plastic entrapment at local scales. This study is the first to apply a vegetation index to describe the complexity and diversity of plant communities related to plastic entrapment. Future research urgently needs to unveil this <em>phenomenon</em> at a global scale as well as to focus on the interactions and effects of macroplastics on plants. Understanding plant structures and 3DVI usage in retaining plastics can help identify plastic hotspot areas and inform mitigation and clean-up efforts to address plastic pollution effectively.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"41 ","pages":"Article 100450"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662825000180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plastics are a significant environmental problem, accumulating in ecosystems and causing harmful effects. While macroplastics in rivers have only recently gained attention, most studies focus on their transport to the sea, neglecting the fact that plastics often remain within fluvial systems. Previous research has primarily considered abiotic factors in this transport process. However, recent findings indicate that vegetation plays a crucial role in trapping plastics in urban and lowland watercourses. The role and structure of riparian vegetation in plastic entrapment are poorly understood. This study investigates the relationship between vegetation structure and plastic entrapment applying the 3D Vegetation Index (3DVI) to quantify vegetation complexity and its capacity to trap plastics. Field data on plastics and vegetation were collected from six rivers in central Italy across three riverine zones. Results show a significant correlation between macroplastics trapped in vegetation and vegetation structure, with denser and more diverse plant communities trapping more plastics. Particularly, a significant regression between 3DVI and plastics in vegetation was observed only in the lower river zone. The higher the 3DVI value, the more complex the vegetation, indicating greater plastic trapping efficiency. These findings suggest that biotic factors, particularly vegetation structure, are important variables for driving riverine plastic entrapment at local scales. This study is the first to apply a vegetation index to describe the complexity and diversity of plant communities related to plastic entrapment. Future research urgently needs to unveil this phenomenon at a global scale as well as to focus on the interactions and effects of macroplastics on plants. Understanding plant structures and 3DVI usage in retaining plastics can help identify plastic hotspot areas and inform mitigation and clean-up efforts to address plastic pollution effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
期刊最新文献
Antarctic fungal inoculation enhances drought tolerance and modulates fruit physiology in blueberry plants Comprehensive allelic series analysis uncovers the novel function of the tomato FALSIFLORA gene in the cessation of floral meristem activity Comprehensive genome-wide expression analysis of NLP transcription factors elucidates their crucial role in enhancing nitrogen response in wheat (Triticum aestivum L.) Twenty years of AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) gene family research – Their potential in crop improvement RTR_Lite_MobileNetV2: A lightweight and efficient model for plant disease detection and classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1