REDIRE: Extreme REduction DImension for extRactivE Summarization

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data & Knowledge Engineering Pub Date : 2025-01-26 DOI:10.1016/j.datak.2025.102407
Christophe Rodrigues , Marius Ortega , Aurélien Bossard , Nédra Mellouli
{"title":"REDIRE: Extreme REduction DImension for extRactivE Summarization","authors":"Christophe Rodrigues ,&nbsp;Marius Ortega ,&nbsp;Aurélien Bossard ,&nbsp;Nédra Mellouli","doi":"10.1016/j.datak.2025.102407","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an automatic unsupervised summarization model capable of extracting the most important sentences from a corpus. The unsupervised aspect makes it possible to do away with large corpora, made up of documents and their reference summaries, and to directly process documents potentially made up of several thousand words. To extract sentences in a summary, we use pre-entrained word embeddings to represent the documents. From this thick cloud of word vectors, we apply an extreme dimension reduction to identify important words, which we group by proximity. Sentences are extracted using linear constraint solving to maximize the information present in the summary. We evaluate the approach on large documents and present very encouraging initial results.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"157 ","pages":"Article 102407"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X25000023","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an automatic unsupervised summarization model capable of extracting the most important sentences from a corpus. The unsupervised aspect makes it possible to do away with large corpora, made up of documents and their reference summaries, and to directly process documents potentially made up of several thousand words. To extract sentences in a summary, we use pre-entrained word embeddings to represent the documents. From this thick cloud of word vectors, we apply an extreme dimension reduction to identify important words, which we group by proximity. Sentences are extracted using linear constraint solving to maximize the information present in the summary. We evaluate the approach on large documents and present very encouraging initial results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
期刊最新文献
REDIRE: Extreme REduction DImension for extRactivE Summarization Logic-infused knowledge graph QA: Enhancing large language models for specialized domains through Prolog integration A methodology for the systematic design of storytelling dashboards applied to Industry 4.0 Ensuring safety in digital spaces: Detecting code-mixed hate speech in social media posts A survey on big data classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1