Jianhui Ji , Shaomin Liu , Han Wang , Youjiang Liu , Mengchao Jin , Jie Sheng , Shenglai Zhen , Chilai Chen
{"title":"A boundary condition decoupled steady-state equivalent model for the simulation of FAIMS ion optical path","authors":"Jianhui Ji , Shaomin Liu , Han Wang , Youjiang Liu , Mengchao Jin , Jie Sheng , Shenglai Zhen , Chilai Chen","doi":"10.1016/j.ijms.2024.117387","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposed a boundary condition decoupled steady-state equivalent model (BCD-SSE Model) for high-field asymmetric waveform ion mobility spectrometry (FAIMS) ion optical path simulation, which successfully incorporated ion diffusion loss and oscillatory loss (dispersion voltage) into the steady-state simulation without altering the actual flow field distribution. The accuracy and efficiency of the model were verified by studying the effects of different dispersion voltage amplitudes, frequencies, duty cycles, and carrier gas flow rates on spectral peak characteristics (position, height, and width). The experimental results show that the spectrum generated by the BCD-SSE Model was in good agreement with the existing general FAIMS simulation model (SIMION/SDS Model). Additionally, the precision of the peak height and full width at half maximum (FWHM) in the FAIMS spectrum using the BCD-SSE Model is 10 times and 3 times greater than that of the traditional steady-state model (SS Model), respectively. Most importantly, compared to the SIMION/SDS Model, the BCD-SSE Model reduced the simulation time from the scale of hundreds of minutes to mere minutes, and it resolved the issue of instability in the simulation results encountered with the SIMION/SDS Model. The proposed method resolved the conflict between simulation accuracy and time consumption, provided a fast and accurate steady-state equivalent simulation method for the analysis of FAIMS ion transport processes and the optimization of ion optical path design.</div></div>","PeriodicalId":338,"journal":{"name":"International Journal of Mass Spectrometry","volume":"508 ","pages":"Article 117387"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387380624001982","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposed a boundary condition decoupled steady-state equivalent model (BCD-SSE Model) for high-field asymmetric waveform ion mobility spectrometry (FAIMS) ion optical path simulation, which successfully incorporated ion diffusion loss and oscillatory loss (dispersion voltage) into the steady-state simulation without altering the actual flow field distribution. The accuracy and efficiency of the model were verified by studying the effects of different dispersion voltage amplitudes, frequencies, duty cycles, and carrier gas flow rates on spectral peak characteristics (position, height, and width). The experimental results show that the spectrum generated by the BCD-SSE Model was in good agreement with the existing general FAIMS simulation model (SIMION/SDS Model). Additionally, the precision of the peak height and full width at half maximum (FWHM) in the FAIMS spectrum using the BCD-SSE Model is 10 times and 3 times greater than that of the traditional steady-state model (SS Model), respectively. Most importantly, compared to the SIMION/SDS Model, the BCD-SSE Model reduced the simulation time from the scale of hundreds of minutes to mere minutes, and it resolved the issue of instability in the simulation results encountered with the SIMION/SDS Model. The proposed method resolved the conflict between simulation accuracy and time consumption, provided a fast and accurate steady-state equivalent simulation method for the analysis of FAIMS ion transport processes and the optimization of ion optical path design.
期刊介绍:
The journal invites papers that advance the field of mass spectrometry by exploring fundamental aspects of ion processes using both the experimental and theoretical approaches, developing new instrumentation and experimental strategies for chemical analysis using mass spectrometry, developing new computational strategies for data interpretation and integration, reporting new applications of mass spectrometry and hyphenated techniques in biology, chemistry, geology, and physics.
Papers, in which standard mass spectrometry techniques are used for analysis will not be considered.
IJMS publishes full-length articles, short communications, reviews, and feature articles including young scientist features.