{"title":"Sustainable supply chain management: A green computing approach using deep Q-networks","authors":"Di Yuan, Yue Wang","doi":"10.1016/j.suscom.2024.101063","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the challenges of resource allocation and inventory management in supply chain systems by constructing an intelligent supply chain optimization model based on Deep Q-Networks (ISCO-DQ), emphasizing eco-efficiency. Initially, the study builds a supply chain model that incorporates supplier-customer relationships, guided by the principles of green computing to minimize environmental impact. The model applies Markov Decision Processes to develop a framework for sustainable supplier inventory control, focusing on reducing waste and optimizing resource usage. Utilizing the function approximation capabilities of Deep Q-Networks, the model not only achieves intelligent resource allocation but also prioritizes energy-efficient practices in inventory management. Experimental results indicate that the ISCO-DQ inventory control model converges to approximately −41,400 and −181,300 after around 100 and 300 cycles, respectively, under customer demand distributions that follow normal distributions. Furthermore, compared to traditional single-period stochastic and fixed-order quantity inventory control models, the total cost of the ISCO-DQ model is reduced by an average of 6.7 % and 16 %, respectively, while minimizing carbon emissions associated with overproduction and excess inventory. Additionally, the ISCO-DQ model significantly mitigates costs arising from demand uncertainty by quickly adapting to fluctuations and optimizing inventory strategies, thereby fostering a circular economy. This demonstrates that the ISCO-DQ inventory control model effectively addresses inefficiencies, inflexibility, and suboptimal resource allocation in conventional supply chain management, ultimately promoting sustainable development and environmental stewardship for enterprises.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"45 ","pages":"Article 101063"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924001082","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the challenges of resource allocation and inventory management in supply chain systems by constructing an intelligent supply chain optimization model based on Deep Q-Networks (ISCO-DQ), emphasizing eco-efficiency. Initially, the study builds a supply chain model that incorporates supplier-customer relationships, guided by the principles of green computing to minimize environmental impact. The model applies Markov Decision Processes to develop a framework for sustainable supplier inventory control, focusing on reducing waste and optimizing resource usage. Utilizing the function approximation capabilities of Deep Q-Networks, the model not only achieves intelligent resource allocation but also prioritizes energy-efficient practices in inventory management. Experimental results indicate that the ISCO-DQ inventory control model converges to approximately −41,400 and −181,300 after around 100 and 300 cycles, respectively, under customer demand distributions that follow normal distributions. Furthermore, compared to traditional single-period stochastic and fixed-order quantity inventory control models, the total cost of the ISCO-DQ model is reduced by an average of 6.7 % and 16 %, respectively, while minimizing carbon emissions associated with overproduction and excess inventory. Additionally, the ISCO-DQ model significantly mitigates costs arising from demand uncertainty by quickly adapting to fluctuations and optimizing inventory strategies, thereby fostering a circular economy. This demonstrates that the ISCO-DQ inventory control model effectively addresses inefficiencies, inflexibility, and suboptimal resource allocation in conventional supply chain management, ultimately promoting sustainable development and environmental stewardship for enterprises.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.