Yujie Lu , Bo Liu , Wei Wei , Bo Xiao , Zhangding Liu , Wensheng Li
{"title":"Generating synthetic images for construction machinery data augmentation utilizing context-aware object placement","authors":"Yujie Lu , Bo Liu , Wei Wei , Bo Xiao , Zhangding Liu , Wensheng Li","doi":"10.1016/j.dibe.2025.100610","DOIUrl":null,"url":null,"abstract":"<div><div>Dataset is an essential factor influencing the accuracy of computer vision (CV) tasks in construction. Although image synthesis methods can automatically generate substantial annotated construction data compared to manual annotation, existing challenges limited the CV task accuracy, such as geometric inconsistency. To efficiently generate high-quality data, a synthesis method of construction data was proposed utilizing Unreal Engine (UE) and PlaceNet. First, the inpainting algorithm was applied to generate pure backgrounds, followed by multi-angle foreground capture within the UE. Then, the Swin Transformer and improved loss functions were integrated into PlaceNet to enhance the feature extraction of construction backgrounds, facilitating object placement accuracy. The generated synthetic dataset achieved a high average accuracy (mAP = 85.2%) in object detection tasks, 2.1% higher than the real dataset. This study offers theoretical and practical insights for synthetic dataset generation in construction, providing a future perspective to enhance CV task performance utilizing image synthesis.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"21 ","pages":"Article 100610"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165925000109","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dataset is an essential factor influencing the accuracy of computer vision (CV) tasks in construction. Although image synthesis methods can automatically generate substantial annotated construction data compared to manual annotation, existing challenges limited the CV task accuracy, such as geometric inconsistency. To efficiently generate high-quality data, a synthesis method of construction data was proposed utilizing Unreal Engine (UE) and PlaceNet. First, the inpainting algorithm was applied to generate pure backgrounds, followed by multi-angle foreground capture within the UE. Then, the Swin Transformer and improved loss functions were integrated into PlaceNet to enhance the feature extraction of construction backgrounds, facilitating object placement accuracy. The generated synthetic dataset achieved a high average accuracy (mAP = 85.2%) in object detection tasks, 2.1% higher than the real dataset. This study offers theoretical and practical insights for synthetic dataset generation in construction, providing a future perspective to enhance CV task performance utilizing image synthesis.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.