Predicting cold-stress responsive genes in cotton with machine learning models

Mengke Zhang , Yayuan Deng , Wanghong Shi , Luyao Wang , Na Zhou , Heng Wang , Zhiyuan Zhang , Xueying Guan , Ting Zhao
{"title":"Predicting cold-stress responsive genes in cotton with machine learning models","authors":"Mengke Zhang ,&nbsp;Yayuan Deng ,&nbsp;Wanghong Shi ,&nbsp;Luyao Wang ,&nbsp;Na Zhou ,&nbsp;Heng Wang ,&nbsp;Zhiyuan Zhang ,&nbsp;Xueying Guan ,&nbsp;Ting Zhao","doi":"10.1016/j.cropd.2024.100085","DOIUrl":null,"url":null,"abstract":"<div><div>Machine Learning (ML) serves as a potent tool for data mining and predictive analytics in genomic research. However, its application in identifying stress-responsive genes remains underexplored. This study identified distinct variations in the expression patterns of one-to-one homologous genes responding to cold stress in three cotton species: <em>Gossypium hirsutum</em>, <em>Gossypium barbadense</em>, and <em>Gossypium arboreum</em>. To better understand cold-responsive genes, we developed ML predictive models (LightGBM, XGBoost, and Random Forest) utilizing 121 biochemical features. The incorporating of these features significantly enhanced model accuracy. Moreover, incorporating evolutionary information further refined the models, achieving an impressive 80.80 ​% accuracy in predicting cold-stress responsive genes. Notably, models trained on sequence features from <em>G. hirsutum</em> showed transferability to the closely related species of <em>G. barbadense</em>, with accuracies ranging from 78.65 ​% to 83.04 ​%. This research presents a promising workflow for identifying candidate genes for experimental exploration of cold stress responses and establishes a systematic framework for predicting cold-stress related genes using ML methodologies.</div></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"4 1","pages":"Article 100085"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277289942400034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Learning (ML) serves as a potent tool for data mining and predictive analytics in genomic research. However, its application in identifying stress-responsive genes remains underexplored. This study identified distinct variations in the expression patterns of one-to-one homologous genes responding to cold stress in three cotton species: Gossypium hirsutum, Gossypium barbadense, and Gossypium arboreum. To better understand cold-responsive genes, we developed ML predictive models (LightGBM, XGBoost, and Random Forest) utilizing 121 biochemical features. The incorporating of these features significantly enhanced model accuracy. Moreover, incorporating evolutionary information further refined the models, achieving an impressive 80.80 ​% accuracy in predicting cold-stress responsive genes. Notably, models trained on sequence features from G. hirsutum showed transferability to the closely related species of G. barbadense, with accuracies ranging from 78.65 ​% to 83.04 ​%. This research presents a promising workflow for identifying candidate genes for experimental exploration of cold stress responses and establishes a systematic framework for predicting cold-stress related genes using ML methodologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the B chromosome-located long non-coding RNAs on gene expression in maize Evaluation of different sesame varieties cultivated under saline conditions in the southwestern coastal region of Bangladesh Synthetic genomics in crop breeding: Evidence, opportunities and challenges Genome-wide association study and candidate gene identification for the cold tolerance at the seedling stage of rapeseed (Brassica napus L.) Analysis of CYP701A1 genes in gossypium species and functional characterization through gene silencing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1