An investigation of supervised machine learning models for predicting drivers’ ethical decisions in autonomous vehicles

Amandeep Singh, Yovela Murzello, Sushil Pokhrel, Siby Samuel
{"title":"An investigation of supervised machine learning models for predicting drivers’ ethical decisions in autonomous vehicles","authors":"Amandeep Singh,&nbsp;Yovela Murzello,&nbsp;Sushil Pokhrel,&nbsp;Siby Samuel","doi":"10.1016/j.dajour.2025.100548","DOIUrl":null,"url":null,"abstract":"<div><div>Vehicle-pedestrian interactions in autonomous vehicles (AVs) present complex challenges that require advanced decision-making algorithms. Understanding the factors influencing ethical decision-making (EDM) in critical situations is essential as AVs become more prevalent. This study addresses a gap in AV research by using predictive analytics methods to develop models that assess decision-making outcomes under varying time pressures. We recruited 204 participants from North America, aged 18-30 years and 65 years and above, for an online experiment. Participants viewed video clips from a driving simulator that simulated ethical dilemmas. They had to decide whether the AV should stay in its lane or change lanes by pressing the spacebar. The principal component analysis identified age, distraction, and trust in automation as the key factors influencing decision-making. Several machine learning models were optimized to predict decision outcomes, with the Gaussian Naive Bayes model demonstrating strong performance across different time pressures. Feature importance analysis highlighted the significant roles of age and trust in automation. Partial dependence plots illustrated the interaction between these factors and their influence on decision-making outcomes under time constraints. These findings contribute to the development of personalized decision-making algorithms for AVs. Predictive analytics provides valuable insights into improving AV systems’ safety, trust, and ethical behavior by accounting for individual differences in decision-making.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"14 ","pages":"Article 100548"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicle-pedestrian interactions in autonomous vehicles (AVs) present complex challenges that require advanced decision-making algorithms. Understanding the factors influencing ethical decision-making (EDM) in critical situations is essential as AVs become more prevalent. This study addresses a gap in AV research by using predictive analytics methods to develop models that assess decision-making outcomes under varying time pressures. We recruited 204 participants from North America, aged 18-30 years and 65 years and above, for an online experiment. Participants viewed video clips from a driving simulator that simulated ethical dilemmas. They had to decide whether the AV should stay in its lane or change lanes by pressing the spacebar. The principal component analysis identified age, distraction, and trust in automation as the key factors influencing decision-making. Several machine learning models were optimized to predict decision outcomes, with the Gaussian Naive Bayes model demonstrating strong performance across different time pressures. Feature importance analysis highlighted the significant roles of age and trust in automation. Partial dependence plots illustrated the interaction between these factors and their influence on decision-making outcomes under time constraints. These findings contribute to the development of personalized decision-making algorithms for AVs. Predictive analytics provides valuable insights into improving AV systems’ safety, trust, and ethical behavior by accounting for individual differences in decision-making.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
A hybrid multi-objective optimization approach with NSGA-II for feature selection A novel Full Multiplicative Data Envelopment Analysis Model for solving Multi-Attribute Decision-Making problems An investigation of supervised machine learning models for predicting drivers’ ethical decisions in autonomous vehicles An outlier detection framework for Air Quality Index prediction using linear and ensemble models A systematic review of machine learning applications in sustainable supplier selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1