{"title":"Synthesis and catalytic performance of Pd NPs-doped polymer brushes for optimization and modeling of NaBH4 hydrolysis","authors":"Ümit Ecer , Adem Zengin , Tekin Şahan","doi":"10.1016/j.joei.2025.101974","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium borohydride (NaBH<sub>4</sub>) is considered one of the most promising materials for hydrogen (H<sub>2</sub>) production. For this, designing a high-performance and cost-effective catalyst is an important step in developing a sustainable hydrogen source. Here, firstly, cross-linked polymer brushes were grafted on the surface of pumice minerals (P4VP/PMC). Then, Pd nanoparticles were reduced on the surface using the NaBH<sub>4</sub> reduction method (Pd-P4VP/PMC). The composition and structure of the catalyst were analyzed using diverse techniques. Response surface methodology (RSM) was used to optimize and model the impact of the main factor interactions during the hydrolysis process. According to the quadratic model obtained, catalyst concentration 2.192 mg/mL; temperature 57.3 °C; NaBH<sub>4</sub> concentration 186.6 mM, and NaOH 5.435 wt% were determined to be optimum values using the matrix method. At these values, the maximum hydrogen generation rate (HGR) was 8732.85 mL H<sub>2</sub>/(g<sub>cat.</sub> min.) Also, reusability was tested and after five cycles the catalytic activity of Pd-P4VP/PMC was reduced by only ∼30 %. As a result, the synthesized catalyst exhibited relatively low activation energy (26.85 kj/mol) and high HGR (8732.85 mL H<sub>2</sub>/(g<sub>cat.</sub> min.)), clearly demonstrating the superiority of Pd-P4VP/PMC as a catalyst for hydrogen generation from hydrolysis of NaBH<sub>4</sub>.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"119 ","pages":"Article 101974"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967125000029","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium borohydride (NaBH4) is considered one of the most promising materials for hydrogen (H2) production. For this, designing a high-performance and cost-effective catalyst is an important step in developing a sustainable hydrogen source. Here, firstly, cross-linked polymer brushes were grafted on the surface of pumice minerals (P4VP/PMC). Then, Pd nanoparticles were reduced on the surface using the NaBH4 reduction method (Pd-P4VP/PMC). The composition and structure of the catalyst were analyzed using diverse techniques. Response surface methodology (RSM) was used to optimize and model the impact of the main factor interactions during the hydrolysis process. According to the quadratic model obtained, catalyst concentration 2.192 mg/mL; temperature 57.3 °C; NaBH4 concentration 186.6 mM, and NaOH 5.435 wt% were determined to be optimum values using the matrix method. At these values, the maximum hydrogen generation rate (HGR) was 8732.85 mL H2/(gcat. min.) Also, reusability was tested and after five cycles the catalytic activity of Pd-P4VP/PMC was reduced by only ∼30 %. As a result, the synthesized catalyst exhibited relatively low activation energy (26.85 kj/mol) and high HGR (8732.85 mL H2/(gcat. min.)), clearly demonstrating the superiority of Pd-P4VP/PMC as a catalyst for hydrogen generation from hydrolysis of NaBH4.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.