Ming Lei , Yiteng Zeng , Dikun Hong , Yujie Hu , Wei Liu , Qian Zhang , Lei Zhang
{"title":"Investigation on the emission characteristics of gaseous sulfur during pressurized coal gasification by experiment and ReaxFF MD stimulation","authors":"Ming Lei , Yiteng Zeng , Dikun Hong , Yujie Hu , Wei Liu , Qian Zhang , Lei Zhang","doi":"10.1016/j.joei.2025.101986","DOIUrl":null,"url":null,"abstract":"<div><div>The emission characteristics of gaseous sulfur in the process of gasification is crucial for developing clean coal technology. To study the release behavior of gaseous sulfur during pressurized gasification, this study employed both experimental methods and molecular dynamics simulations. The experimental results indicate that increasing the gasification temperature accelerates the sulfur in coal converting to H<sub>2</sub>S and COS. And increasing the pressure reduces the release of gaseous sulfur by reducing H<sub>2</sub> and CO production. With the rise in CO<sub>2</sub> blending ratio, the emission of COS increases and the emission of H<sub>2</sub>S decreases. Furthermore, the benzothiophene is chosen to examine the release of gaseous sulfur by Reactive Force Field molecular dynamics (ReaxFF MD) method. The calculations exhibit that high temperature facilitates the removal of thiophene sulfur, while the elevated pressure diminishes the main gaseous sulfur emissions and raises the possibility of coal char sulfur formation. The increase of H<sub>2</sub>O blending ratio contributes to an increase in H and H<sub>2</sub>, while a decrease in OH and O. And the presence of steam can also provide active hydrogen directly, thereby promoting the migration paths of R-S/C<sub>1-4</sub>-S→HS→H<sub>2</sub>S, S→H<sub>2</sub>S, and weakens the migration paths of R-S→COS, HS→S→COS. The CO<sub>2</sub> molecule extends the COS generation path, but the generation of COS remains dependent on the CO molecule to some extent.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"119 ","pages":"Article 101986"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967125000145","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The emission characteristics of gaseous sulfur in the process of gasification is crucial for developing clean coal technology. To study the release behavior of gaseous sulfur during pressurized gasification, this study employed both experimental methods and molecular dynamics simulations. The experimental results indicate that increasing the gasification temperature accelerates the sulfur in coal converting to H2S and COS. And increasing the pressure reduces the release of gaseous sulfur by reducing H2 and CO production. With the rise in CO2 blending ratio, the emission of COS increases and the emission of H2S decreases. Furthermore, the benzothiophene is chosen to examine the release of gaseous sulfur by Reactive Force Field molecular dynamics (ReaxFF MD) method. The calculations exhibit that high temperature facilitates the removal of thiophene sulfur, while the elevated pressure diminishes the main gaseous sulfur emissions and raises the possibility of coal char sulfur formation. The increase of H2O blending ratio contributes to an increase in H and H2, while a decrease in OH and O. And the presence of steam can also provide active hydrogen directly, thereby promoting the migration paths of R-S/C1-4-S→HS→H2S, S→H2S, and weakens the migration paths of R-S→COS, HS→S→COS. The CO2 molecule extends the COS generation path, but the generation of COS remains dependent on the CO molecule to some extent.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.