State and parameter estimation in closed-loop dynamic real-time optimization — A comparative study

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-11-25 DOI:10.1016/j.compchemeng.2024.108932
José Matias , Christopher L.E. Swartz
{"title":"State and parameter estimation in closed-loop dynamic real-time optimization — A comparative study","authors":"José Matias ,&nbsp;Christopher L.E. Swartz","doi":"10.1016/j.compchemeng.2024.108932","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic real-time optimization (DRTO) schemes have risen in popularity as plant environments have become increasingly dynamic due to globalization and deregulated energy markets. Inclusion of the impact of the plant control system on the predicted response gives rise to closed-loop DRTO (CL-DRTO). To avoid using a potentially inaccurate nominal model in CL-DRTO, this work explores incorporating plant measurements through various model updating strategies: bias update, state estimation, and combined parameter and state estimation, the latter two utilizing moving horizon estimation. The strategies are applied to two case studies, a distillation column and a continuous stirred tank reactor. Our findings suggest that the combined state and parameter estimation approach provides improvement in economic performance and fewer constraint violations when parametric uncertainty affects system dynamics nonlinearly. Conversely, the bias update strategy achieves satisfactory economic performance when the propagation of parameter uncertainty in the dynamic model is linear or mildly nonlinear.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108932"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003508","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic real-time optimization (DRTO) schemes have risen in popularity as plant environments have become increasingly dynamic due to globalization and deregulated energy markets. Inclusion of the impact of the plant control system on the predicted response gives rise to closed-loop DRTO (CL-DRTO). To avoid using a potentially inaccurate nominal model in CL-DRTO, this work explores incorporating plant measurements through various model updating strategies: bias update, state estimation, and combined parameter and state estimation, the latter two utilizing moving horizon estimation. The strategies are applied to two case studies, a distillation column and a continuous stirred tank reactor. Our findings suggest that the combined state and parameter estimation approach provides improvement in economic performance and fewer constraint violations when parametric uncertainty affects system dynamics nonlinearly. Conversely, the bias update strategy achieves satisfactory economic performance when the propagation of parameter uncertainty in the dynamic model is linear or mildly nonlinear.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
闭环动态实时优化中状态和参数估计的比较研究
由于全球化和能源市场的放松管制,植物环境变得越来越动态,动态实时优化(DRTO)方案越来越受欢迎。考虑到电厂控制系统对预测响应的影响,就产生了闭环DRTO (CL-DRTO)。为了避免在CL-DRTO中使用可能不准确的标称模型,本工作探索了通过各种模型更新策略合并植物测量:偏差更新、状态估计和组合参数和状态估计,后两者利用移动视界估计。该策略应用于两个案例研究,精馏塔和连续搅拌槽式反应器。我们的研究结果表明,当参数不确定性非线性影响系统动力学时,状态和参数组合估计方法可以提高经济性能并减少约束违规。相反,当动态模型中参数不确定性的传播为线性或轻度非线性时,偏差更新策略获得了令人满意的经济性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
YANNs: Y-wise affine neural networks for exact and efficient representations of piecewise linear functions Unlocking reactive power potential of industrial processes for voltage support through scheduling optimization Superstructure modeling and optimization of dynamic processes applied to high-performance liquid chromatography with recycling Partial least-squares model adaptation by bootstrap resampling PSFCL: A Probabilistic Slow Feature Contrastive Learning approach for incipient fault diagnosis in industrial processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1