Discussion on “Potential improvement in the mechanical performance and thermal resistance of geopolymer with appropriate microplastic incorporation: A sustainable solution for recycling and reusing microplastics”
Mrunal S. Bokade, Surender Singh, Devendra Narain Singh
{"title":"Discussion on “Potential improvement in the mechanical performance and thermal resistance of geopolymer with appropriate microplastic incorporation: A sustainable solution for recycling and reusing microplastics”","authors":"Mrunal S. Bokade, Surender Singh, Devendra Narain Singh","doi":"10.1016/j.wasman.2025.01.041","DOIUrl":null,"url":null,"abstract":"<div><div>We read with great interest the paper by <span><span>Xie et al. (2024)</span></span> that describes the methodology for recycling and reusing microplastics, <em>MP</em>s, by utilizing it into the geopolymer, <em>GP</em>, matrix made from fly ash, <em>FA</em>, and ground granulated blast furnace slag, <em>GGBFS</em>. The <em>GP</em> was created by activating the <em>FA</em> and <em>GGBFS</em> (7:3 ratio) using 16 M NaOH. Herein the <em>MPs</em> of various sizes (viz. 50, 150, and 500 µm) and varying percentages (viz. 2.5, 5, 7.5, and 10) were encapsulated in the <em>GP</em> matrix and further, they were cured at 40 and 80 <sup>˚</sup>C for 24 h and later at ambient temperatures. Several experiments were performed to investigate the physical (viz. bulk density, fluidity, thermal resistance), mechanical (viz. compressive strength, flexural strength), mineralogical, and microstructural properties of synthesized <em>GP</em>. Furthermore, these samples were exposed to elevated temperatures viz. 200, 400, and 600 <sup>˚</sup>C to investigate the effect of <em>MP</em>s on the thermal resistance of <em>GP</em> matrix. Although, <span><span>Xie et al. (2024)</span></span> have presented some intriguing findings, however there are serious issues concerning the proposed ideology and subsequently, its justification, which the authors would like to highlight through this discussion.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"195 ","pages":"Pages 104-106"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25000492","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
We read with great interest the paper by Xie et al. (2024) that describes the methodology for recycling and reusing microplastics, MPs, by utilizing it into the geopolymer, GP, matrix made from fly ash, FA, and ground granulated blast furnace slag, GGBFS. The GP was created by activating the FA and GGBFS (7:3 ratio) using 16 M NaOH. Herein the MPs of various sizes (viz. 50, 150, and 500 µm) and varying percentages (viz. 2.5, 5, 7.5, and 10) were encapsulated in the GP matrix and further, they were cured at 40 and 80 ˚C for 24 h and later at ambient temperatures. Several experiments were performed to investigate the physical (viz. bulk density, fluidity, thermal resistance), mechanical (viz. compressive strength, flexural strength), mineralogical, and microstructural properties of synthesized GP. Furthermore, these samples were exposed to elevated temperatures viz. 200, 400, and 600 ˚C to investigate the effect of MPs on the thermal resistance of GP matrix. Although, Xie et al. (2024) have presented some intriguing findings, however there are serious issues concerning the proposed ideology and subsequently, its justification, which the authors would like to highlight through this discussion.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)