Design, development and performance evaluation of a miniature electrostatic precipitator in an indoor environment

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electrostatics Pub Date : 2025-01-31 DOI:10.1016/j.elstat.2025.104038
Aiswarya Kumar , Prashant Nawale , Manoranjan Sahu
{"title":"Design, development and performance evaluation of a miniature electrostatic precipitator in an indoor environment","authors":"Aiswarya Kumar ,&nbsp;Prashant Nawale ,&nbsp;Manoranjan Sahu","doi":"10.1016/j.elstat.2025.104038","DOIUrl":null,"url":null,"abstract":"<div><div>Indoor air quality is a major concern in the modern environment. Although various pollutants coexist indoors, particulate matter (PM) is a major health concern. Even though different PM capture technologies are available in market as well as on lab scale, they pose several drawbacks. It was in this regard that electrostatic precipitator (ESP), a widely preferred technology for industrial application but has yet to be explored to that extent in indoor environments could provide multiple benefits in latter. Therefore, a miniature single-wire, single-stage and wire-plate square cross-sectional ESP was designed in laboratory and operated at optimal operating conditions based on theoretical calculations, experimental results as well as computational fluid dynamics (CFD) modelling to obtain maximised capture of PM. Results from study confirmed that designed ESP was capable of capturing various standard aerosols such as sodium chloride, ammonium chloride and magnesium chloride with a total removal efficiency of 99.94 %–99.97 % in wide PM sizes from 10 nm to 800 nm. To simulate performance in a real scenario, experiments were also performed with major indoor PM sources like incense sticks, candle burning and mosquito coils having different particle number distributions and achieved a total PM capture efficiency of 99.24, 99.99 and 99.97 % respectively. Designed ESP also removed ambient air as well as infiltrated PM from outdoors with a total efficiency of 97.87 % and 99.74 % respectively. Additionally, energy consumed/clean air delivery rate (CADR) (0.32 W/(m³/hr)) and emission of by-products like ultrafine particles as well as nitrogen dioxide were found to be comparatively lesser compared to commercial purifiers suggesting its possible applicability in scaling up as an indoor air purifier.</div></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"134 ","pages":"Article 104038"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388625000105","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Indoor air quality is a major concern in the modern environment. Although various pollutants coexist indoors, particulate matter (PM) is a major health concern. Even though different PM capture technologies are available in market as well as on lab scale, they pose several drawbacks. It was in this regard that electrostatic precipitator (ESP), a widely preferred technology for industrial application but has yet to be explored to that extent in indoor environments could provide multiple benefits in latter. Therefore, a miniature single-wire, single-stage and wire-plate square cross-sectional ESP was designed in laboratory and operated at optimal operating conditions based on theoretical calculations, experimental results as well as computational fluid dynamics (CFD) modelling to obtain maximised capture of PM. Results from study confirmed that designed ESP was capable of capturing various standard aerosols such as sodium chloride, ammonium chloride and magnesium chloride with a total removal efficiency of 99.94 %–99.97 % in wide PM sizes from 10 nm to 800 nm. To simulate performance in a real scenario, experiments were also performed with major indoor PM sources like incense sticks, candle burning and mosquito coils having different particle number distributions and achieved a total PM capture efficiency of 99.24, 99.99 and 99.97 % respectively. Designed ESP also removed ambient air as well as infiltrated PM from outdoors with a total efficiency of 97.87 % and 99.74 % respectively. Additionally, energy consumed/clean air delivery rate (CADR) (0.32 W/(m³/hr)) and emission of by-products like ultrafine particles as well as nitrogen dioxide were found to be comparatively lesser compared to commercial purifiers suggesting its possible applicability in scaling up as an indoor air purifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electrostatics
Journal of Electrostatics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
11.10%
发文量
81
审稿时长
49 days
期刊介绍: The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas: Electrostatic charge separation processes. Electrostatic manipulation of particles, droplets, and biological cells. Electrostatically driven or controlled fluid flow. Electrostatics in the gas phase.
期刊最新文献
Abrasive induced discharge in solar array drive assembly: Experiment and Monte Carlo simulation Operando space charge distribution measurements coupled with cyclic voltammetry Effects of pre-charger length, symmetry and insertion depth on PM2.5 removal efficiency for electrostatic precipitator (ESP)-type wearable personal air cleaner Editorial Board Geometric profile design effect on composite insulator performance in rainy climate using electrostatic field analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1