Computer-aided molecular design by aligning generative diffusion models: Perspectives and challenges

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-12-27 DOI:10.1016/j.compchemeng.2024.108989
Akshay Ajagekar , Benjamin Decardi-Nelson , Chao Shang , Fengqi You
{"title":"Computer-aided molecular design by aligning generative diffusion models: Perspectives and challenges","authors":"Akshay Ajagekar ,&nbsp;Benjamin Decardi-Nelson ,&nbsp;Chao Shang ,&nbsp;Fengqi You","doi":"10.1016/j.compchemeng.2024.108989","DOIUrl":null,"url":null,"abstract":"<div><div>Deep generative models like diffusion models have generated significant interest in computer-aided molecular design by enabling the automated generation of novel molecular structures. This manuscript aims to highlight the potential of diffusion models in computer-aided molecular design (CAMD) while addressing key limitations in their practical implementation. Diffusion models trained for specific molecular design problems can suffer for design tasks with alternate desired property requirements. To address this challenge, we provide perspectives on the integration of generative diffusion models with optimization methods for CAMD. We examine how pretrained equivariant diffusion models can be effectively aligned with text-guided molecular generation through optimization in the latent space. Computational experiments targeting drug design demonstrate the framework's capability of generating valid molecular structures that satisfy multiple objectives. This work underscores the potential of combining pretrained generative models with gradient-free optimization methods like genetic algorithms to enhance molecular design precision without incurring significant computational costs associated with finetuning diffusion models. Beyond highlighting the practical utility of diffusion models in CAMD, we identify key challenges encountered while adopting these models and propose future research directions to address them, providing a comprehensive roadmap for advancing the field of computational molecular design.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108989"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424004071","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep generative models like diffusion models have generated significant interest in computer-aided molecular design by enabling the automated generation of novel molecular structures. This manuscript aims to highlight the potential of diffusion models in computer-aided molecular design (CAMD) while addressing key limitations in their practical implementation. Diffusion models trained for specific molecular design problems can suffer for design tasks with alternate desired property requirements. To address this challenge, we provide perspectives on the integration of generative diffusion models with optimization methods for CAMD. We examine how pretrained equivariant diffusion models can be effectively aligned with text-guided molecular generation through optimization in the latent space. Computational experiments targeting drug design demonstrate the framework's capability of generating valid molecular structures that satisfy multiple objectives. This work underscores the potential of combining pretrained generative models with gradient-free optimization methods like genetic algorithms to enhance molecular design precision without incurring significant computational costs associated with finetuning diffusion models. Beyond highlighting the practical utility of diffusion models in CAMD, we identify key challenges encountered while adopting these models and propose future research directions to address them, providing a comprehensive roadmap for advancing the field of computational molecular design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对齐生成扩散模型的计算机辅助分子设计:观点和挑战
像扩散模型这样的深度生成模型已经引起了人们对计算机辅助分子设计的极大兴趣,因为它能够自动生成新的分子结构。本文旨在强调扩散模型在计算机辅助分子设计(CAMD)中的潜力,同时解决其实际实施中的关键限制。针对特定分子设计问题训练的扩散模型在具有不同期望性质要求的设计任务中可能会受到影响。为了解决这一挑战,我们提供了关于生成扩散模型与CAMD优化方法集成的观点。我们研究了如何通过潜在空间的优化,将预训练的等变扩散模型与文本引导的分子生成有效地对齐。针对药物设计的计算实验证明了该框架能够生成满足多个目标的有效分子结构。这项工作强调了将预训练生成模型与无梯度优化方法(如遗传算法)相结合的潜力,以提高分子设计精度,而不会产生与微调扩散模型相关的大量计算成本。除了强调扩散模型在CAMD中的实际应用之外,我们还确定了采用这些模型时遇到的关键挑战,并提出了未来的研究方向来解决这些问题,为推进计算分子设计领域提供了全面的路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
YANNs: Y-wise affine neural networks for exact and efficient representations of piecewise linear functions Unlocking reactive power potential of industrial processes for voltage support through scheduling optimization Superstructure modeling and optimization of dynamic processes applied to high-performance liquid chromatography with recycling Partial least-squares model adaptation by bootstrap resampling PSFCL: A Probabilistic Slow Feature Contrastive Learning approach for incipient fault diagnosis in industrial processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1