Preparation and combustion behavior of carbon-based synfuel from biomass/coal/CaO by co-carbonization process

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Materials Today Sustainability Pub Date : 2025-01-20 DOI:10.1016/j.mtsust.2025.101081
Xinyuan Dong , Peng Xu , Lihua Gao , Xiao Han , Junhong Zhang , Zhijun He
{"title":"Preparation and combustion behavior of carbon-based synfuel from biomass/coal/CaO by co-carbonization process","authors":"Xinyuan Dong ,&nbsp;Peng Xu ,&nbsp;Lihua Gao ,&nbsp;Xiao Han ,&nbsp;Junhong Zhang ,&nbsp;Zhijun He","doi":"10.1016/j.mtsust.2025.101081","DOIUrl":null,"url":null,"abstract":"<div><div>An environmentally friendly and low-cost co-carbonization technology has been reported as an effective route for the preparation of carbon-based synfuel for sintering processes employed in the steel industry, in which loaded CaO catalysts promote the synergistic role between sawdust (SD) and bituminous coal (BC). In this work, a series of experiments were conducted to research the effects of the co-carbonization temperature, co-carbonization holding time and addition amount of CaO on synfuel. Finally, a co-carbonization temperature of 550 °C, a co-carbonization holding time of 30 min, and the added amount of CaO at 4 wt% were reasonable preparation conditions based on the biomass/coal of 4/6. According to the above experimental parameters, the solids yield, bulk density and heat value of SD/BC synfuel were 61.07%, 403 kg m<sup>−3</sup> and 27.82 MJ kg<sup>−1</sup>, respectively. These results showed that adding CaO increases the order and density of synfuel microcrystals. For the surface structure, the addition of CaO could improve the content of aromatic C<img>C and C–O, whereas the content of carbonyl C<img>O decreased in the carbonization process, which demonstrated that the addition of CaO could improve transformation of the graphite-like structure. Additionally, SD/BC synfuel loaded with CaO exhibited a rougher surface and larger pores compared to that without CaO loading, and the number of pores decreased because the formation of CaCO<sub>3</sub> coated the synfuel surface. The above indicators of carbon-based synfuel obtained from this study agree with the practical requirements of sintering operations. This work reveals the mechanism of biomass/coal and CaO interaction on the preparation of carbon-based synfuel.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"29 ","pages":"Article 101081"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725000107","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An environmentally friendly and low-cost co-carbonization technology has been reported as an effective route for the preparation of carbon-based synfuel for sintering processes employed in the steel industry, in which loaded CaO catalysts promote the synergistic role between sawdust (SD) and bituminous coal (BC). In this work, a series of experiments were conducted to research the effects of the co-carbonization temperature, co-carbonization holding time and addition amount of CaO on synfuel. Finally, a co-carbonization temperature of 550 °C, a co-carbonization holding time of 30 min, and the added amount of CaO at 4 wt% were reasonable preparation conditions based on the biomass/coal of 4/6. According to the above experimental parameters, the solids yield, bulk density and heat value of SD/BC synfuel were 61.07%, 403 kg m−3 and 27.82 MJ kg−1, respectively. These results showed that adding CaO increases the order and density of synfuel microcrystals. For the surface structure, the addition of CaO could improve the content of aromatic CC and C–O, whereas the content of carbonyl CO decreased in the carbonization process, which demonstrated that the addition of CaO could improve transformation of the graphite-like structure. Additionally, SD/BC synfuel loaded with CaO exhibited a rougher surface and larger pores compared to that without CaO loading, and the number of pores decreased because the formation of CaCO3 coated the synfuel surface. The above indicators of carbon-based synfuel obtained from this study agree with the practical requirements of sintering operations. This work reveals the mechanism of biomass/coal and CaO interaction on the preparation of carbon-based synfuel.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
CaO reagent
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
期刊最新文献
Xanthan gum biopolymer for uniform dispersion of halloysite nanotubes to enhance micro- and macroscopic performance of cementitious composite: A sustainable alternative to chemical surfactants Sustainable CFRP drilling using support plates: A comprehensive analysis of delamination suppression and cost-effectiveness Trends and perspectives on bacterial nanocellulose: A comprehensive analysis from the three helixes of innovation Enhancing high ionic conductivity of polyacryamide/hemp cellulose nanofibers for utilizing as quasi solid electrolyte composites in flexible rechargeable zinc-ion battery with high-safety One-step calcination strategy of 3D printing CuO–ZnO–ZrO2 catalysts for CO2 hydrogenation using digital light processing (DLP)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1