Comparative analysis of RSM and ANN-GA based modeling for protein extraction from cotton seed meal: Effect of extraction parameters on amino acid profile and nutritional characteristics

IF 3.5 2区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Food and Bioproducts Processing Pub Date : 2024-12-26 DOI:10.1016/j.fbp.2024.12.016
Kavita Ware , Piyush Kashyap , Pratik Madhukar Gorde , Rahul Yadav , Vipasha Sharma
{"title":"Comparative analysis of RSM and ANN-GA based modeling for protein extraction from cotton seed meal: Effect of extraction parameters on amino acid profile and nutritional characteristics","authors":"Kavita Ware ,&nbsp;Piyush Kashyap ,&nbsp;Pratik Madhukar Gorde ,&nbsp;Rahul Yadav ,&nbsp;Vipasha Sharma","doi":"10.1016/j.fbp.2024.12.016","DOIUrl":null,"url":null,"abstract":"<div><div>Cottonseed meal (CSM), a residual biomass and valuable by-product, serves as a sustainable protein source, yielding approximately 10 million metric tons globally, enough to meet the annual protein requirements of over half a billion people. In this context, the study aimed to optimize protein extraction from CSM using response surface methodologies (RSM) and artificial neural networks with genetic algorithms (ANN-GA), while also examining its amino nutritional characteristics. The independent variables, pH (8.5–10.5), temperature (25–45 °C), solvent-solid ratio (10–30 mL/g) and time (1–3 h) were designed to optimize the responses protein yield and purity. Various statistical measures were computed to evaluate the errors and coefficients of determination for the projected models. The ANN model shows better results in forecasting protein production and purity, demonstrating superior accuracy and precision. The average mean percentage error (MPE) of the ANN model was lower for protein yield and purity as 0.673 % and 0.182 % compared to RSM 2.56 % and 0.685 % respectively. Under optimal conditions, ANN achieved higher protein yield and purity (28.03 %, 88.69 %) compared to RSM (23.24 %, 87.17 %). The CSM protein isolate contained all essential amino acids with high biological value (70.33) and essential amino acid score (75.26), indicating high-quality protein. This study offers significant insights into effective modeling approaches for protein extraction, highlights utility of ANN-GA in predictive assessments, and underscores the potential of agricultural waste as a cost-effective substrate for high-quality protein supplements in food products.</div></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"150 ","pages":"Pages 63-77"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioproducts Processing","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960308524002852","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cottonseed meal (CSM), a residual biomass and valuable by-product, serves as a sustainable protein source, yielding approximately 10 million metric tons globally, enough to meet the annual protein requirements of over half a billion people. In this context, the study aimed to optimize protein extraction from CSM using response surface methodologies (RSM) and artificial neural networks with genetic algorithms (ANN-GA), while also examining its amino nutritional characteristics. The independent variables, pH (8.5–10.5), temperature (25–45 °C), solvent-solid ratio (10–30 mL/g) and time (1–3 h) were designed to optimize the responses protein yield and purity. Various statistical measures were computed to evaluate the errors and coefficients of determination for the projected models. The ANN model shows better results in forecasting protein production and purity, demonstrating superior accuracy and precision. The average mean percentage error (MPE) of the ANN model was lower for protein yield and purity as 0.673 % and 0.182 % compared to RSM 2.56 % and 0.685 % respectively. Under optimal conditions, ANN achieved higher protein yield and purity (28.03 %, 88.69 %) compared to RSM (23.24 %, 87.17 %). The CSM protein isolate contained all essential amino acids with high biological value (70.33) and essential amino acid score (75.26), indicating high-quality protein. This study offers significant insights into effective modeling approaches for protein extraction, highlights utility of ANN-GA in predictive assessments, and underscores the potential of agricultural waste as a cost-effective substrate for high-quality protein supplements in food products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food and Bioproducts Processing
Food and Bioproducts Processing 工程技术-工程:化工
CiteScore
9.70
自引率
4.30%
发文量
115
审稿时长
24 days
期刊介绍: Official Journal of the European Federation of Chemical Engineering: Part C FBP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering and science dedicated to the safe processing of biological products. It is the only journal to exploit the synergy between biotechnology, bioprocessing and food engineering. Papers showing how research results can be used in engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in equipment or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of food and bioproducts processing. The journal has a strong emphasis on the interface between engineering and food or bioproducts. Papers that are not likely to be published are those: • Primarily concerned with food formulation • That use experimental design techniques to obtain response surfaces but gain little insight from them • That are empirical and ignore established mechanistic models, e.g., empirical drying curves • That are primarily concerned about sensory evaluation and colour • Concern the extraction, encapsulation and/or antioxidant activity of a specific biological material without providing insight that could be applied to a similar but different material, • Containing only chemical analyses of biological materials.
期刊最新文献
From residues to clove: Harnessing novel phenolic acid decarboxylase for 4-Vinyl guaiacol production in industrial Yeast Storage stability, release characteristics, and bioaccessibility of the tocotrienol-rich fraction encapsulated in maltodextrin-starch sodium octenyl succinate microcapsules Chemical profile and bioactivity enhancement of Eucalyptus camaldulensis essential oils through hybridization and rectification: A chemometric and molecular docking study Prediction and optimization of the temperature distribution in different food products for choosing a suitable geometry in a microwave system Extraction of protein from Alphitobius diaperinus larvae (lesser mealworm) powder using tailored bio-based ionic liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1