Gut health improvement by locally isolated probiotics and histomorphometric analysis in Wistar rats

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Research in Biotechnology Pub Date : 2025-01-01 DOI:10.1016/j.crbiot.2024.100271
Zuhra Bibi , Dilara Abbas Bukhari , Muhammad Qadeer Sarwar , Arifullah , Samina Younas , Tayyab Manzoor , Abdul Rehman
{"title":"Gut health improvement by locally isolated probiotics and histomorphometric analysis in Wistar rats","authors":"Zuhra Bibi ,&nbsp;Dilara Abbas Bukhari ,&nbsp;Muhammad Qadeer Sarwar ,&nbsp;Arifullah ,&nbsp;Samina Younas ,&nbsp;Tayyab Manzoor ,&nbsp;Abdul Rehman","doi":"10.1016/j.crbiot.2024.100271","DOIUrl":null,"url":null,"abstract":"<div><div>In the present investigation, lab-isolated probiotics <em>Weisella confusa</em> MZ735961.1, <em>Lactiplantibacillus plantarum</em> MZ707748.1<em>, L. plantarum</em> MZ710117.1<em>,</em> and <em>L. plantarum</em> MZ735961 were used separately and in combinations to evaluate their effect on gut morphology of Wistar rats. Synergistic groups were formed by 1:1 and labeled as G1 (<em>L. plantarum</em> MZ707748.1 and <em>L. plantarum</em> MZ729681.1), G2 (<em>W. confusa</em> MZ735961.1 and <em>L. plantarum</em> MZ727611.1), G3 (<em>L. plantarum</em> MZ729681.1, <em>W. confusa</em> MZ735961.1, and <em>Lactobacillus acidophilus</em> La-14), G4 (all above mentioned probiotics). Rats were gavage-fed with probiotics according to their colony-forming unit (CFU). The experiment was carried out for 35 days. The bacteria were re-isolated from the gut and identified by biochemical tests which confirmed the administration and re-isolation of different <em>Lactobacillus</em> strains from the gut. Molecular characterization was done through 16S rRNA by using universal primers. After sequencing eight <em>Lactobacillus</em> strains were identified. Histopathology of rats’ intestines was done, and different parameters were examined. Villus height, crypt height, crypt width, mucosa, and sub-mucosa of jejunum were significantly (p = 0.00) increased in the G3 synergetic probiotic group compared to 0-day and negative control. However, the villus width showed non-significant (p &gt; 0.05) variations in both genders. Mucosa tunic, muscle tunic, total wall, and crypt depth were significantly increased (p = 0.00) in the G4 group of medial colon. The study concluded that gut morphology improves as probiotics adhere better to the intestinal epithelium, excluding pathogens, reducing inflammation, enhancing nutrient absorption, and stimulating mucosal growth. This results in improved villus structure and gut wall integrity.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100271"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the present investigation, lab-isolated probiotics Weisella confusa MZ735961.1, Lactiplantibacillus plantarum MZ707748.1, L. plantarum MZ710117.1, and L. plantarum MZ735961 were used separately and in combinations to evaluate their effect on gut morphology of Wistar rats. Synergistic groups were formed by 1:1 and labeled as G1 (L. plantarum MZ707748.1 and L. plantarum MZ729681.1), G2 (W. confusa MZ735961.1 and L. plantarum MZ727611.1), G3 (L. plantarum MZ729681.1, W. confusa MZ735961.1, and Lactobacillus acidophilus La-14), G4 (all above mentioned probiotics). Rats were gavage-fed with probiotics according to their colony-forming unit (CFU). The experiment was carried out for 35 days. The bacteria were re-isolated from the gut and identified by biochemical tests which confirmed the administration and re-isolation of different Lactobacillus strains from the gut. Molecular characterization was done through 16S rRNA by using universal primers. After sequencing eight Lactobacillus strains were identified. Histopathology of rats’ intestines was done, and different parameters were examined. Villus height, crypt height, crypt width, mucosa, and sub-mucosa of jejunum were significantly (p = 0.00) increased in the G3 synergetic probiotic group compared to 0-day and negative control. However, the villus width showed non-significant (p > 0.05) variations in both genders. Mucosa tunic, muscle tunic, total wall, and crypt depth were significantly increased (p = 0.00) in the G4 group of medial colon. The study concluded that gut morphology improves as probiotics adhere better to the intestinal epithelium, excluding pathogens, reducing inflammation, enhancing nutrient absorption, and stimulating mucosal growth. This results in improved villus structure and gut wall integrity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Biotechnology
Current Research in Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.70
自引率
3.60%
发文量
50
审稿时长
38 days
期刊介绍: Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines. Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Gut health improvement by locally isolated probiotics and histomorphometric analysis in Wistar rats Design of a thermal stress microfluidic platform to screen stability of therapeutic proteins in pharmaceutical formulations Importance of substrate type and its constituents on overall performance of microbial fuel cells Curcumol inhibits hepatocellular carcinoma proliferation through miRNA-124/STAT3 pathway: Network pharmacology and experimental validation A systematic review on Indian Acacia species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1