{"title":"Knowledge-enhanced data-driven modeling of wastewater treatment processes for energy consumption prediction","authors":"Louis Allen, Joan Cordiner","doi":"10.1016/j.compchemeng.2024.108982","DOIUrl":null,"url":null,"abstract":"<div><div>Rising energy usage in wastewater treatment processes (WWTPs) poses pressing economic and environmental challenges. Machine learning approaches to model these complex systems have been limited by highly non-linear processes and high dataset noise. To address this, we introduce a novel Knowledge-Enhanced Graph Disentanglement framework for Energy Consumption Prediction (KEGD-EC) that leverages causal inference and graph neural networks. This work combines specific knowledge of causal relationships with a disentangled graph convolutional network architecture to facilitate accurate predictions. In a study on a WWTP in Melbourne, we demonstrate a 59.7% reduction in root mean squared error in energy consumption prediction using KEGD-EC compared to the next best model. We show that causal models built using domain knowledge outperform data-driven causal discovery models for complex systems. These results signify a step forward in applying machine learning to complex manufacturing processes, with the integration of causal knowledge into deep learning architectures posing a promising area of research for predictive analytics in manufacturing.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108982"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424004009","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Rising energy usage in wastewater treatment processes (WWTPs) poses pressing economic and environmental challenges. Machine learning approaches to model these complex systems have been limited by highly non-linear processes and high dataset noise. To address this, we introduce a novel Knowledge-Enhanced Graph Disentanglement framework for Energy Consumption Prediction (KEGD-EC) that leverages causal inference and graph neural networks. This work combines specific knowledge of causal relationships with a disentangled graph convolutional network architecture to facilitate accurate predictions. In a study on a WWTP in Melbourne, we demonstrate a 59.7% reduction in root mean squared error in energy consumption prediction using KEGD-EC compared to the next best model. We show that causal models built using domain knowledge outperform data-driven causal discovery models for complex systems. These results signify a step forward in applying machine learning to complex manufacturing processes, with the integration of causal knowledge into deep learning architectures posing a promising area of research for predictive analytics in manufacturing.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.