Oscar Daniel Lara-Montaño , Fernando Israel Gómez-Castro , Claudia Gutiérrez-Antonio , Elena Niculina Dragoi
{"title":"Success-Based Optimization Algorithm (SBOA): Development and enhancement of a metaheuristic optimizer","authors":"Oscar Daniel Lara-Montaño , Fernando Israel Gómez-Castro , Claudia Gutiérrez-Antonio , Elena Niculina Dragoi","doi":"10.1016/j.compchemeng.2024.108987","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the development of the Success-Based Optimization Algorithm (SBOA), a novel metaheuristic inspired by success attribution theory, designed to address complex, high-dimensional optimization problems. SBOA balances exploration and exploitation by utilizing high-performing solutions and average-performing candidates to guide the search process, dynamically adjusting based on solution quality. The algorithm is evaluated against seven well-established optimization methods using CEC 2017 benchmark functions in 10, 30, and 50 dimensions. It is applied to a real-world engineering problem involving the optimal design of shell-and-tube heat exchangers (STHEs). The results demonstrate that SBOA consistently surpasses most competing algorithms, especially in higher-dimensional cases, achieving lower objective values and faster convergence. Statistical analyses, including the Wilcoxon signed-rank test, confirm the significant advantages of SBOA in benchmark performance and cost-effectiveness in practical engineering applications. These findings position SBOA as a highly adaptable and efficient optimization tool for addressing complex tasks.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108987"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424004058","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the development of the Success-Based Optimization Algorithm (SBOA), a novel metaheuristic inspired by success attribution theory, designed to address complex, high-dimensional optimization problems. SBOA balances exploration and exploitation by utilizing high-performing solutions and average-performing candidates to guide the search process, dynamically adjusting based on solution quality. The algorithm is evaluated against seven well-established optimization methods using CEC 2017 benchmark functions in 10, 30, and 50 dimensions. It is applied to a real-world engineering problem involving the optimal design of shell-and-tube heat exchangers (STHEs). The results demonstrate that SBOA consistently surpasses most competing algorithms, especially in higher-dimensional cases, achieving lower objective values and faster convergence. Statistical analyses, including the Wilcoxon signed-rank test, confirm the significant advantages of SBOA in benchmark performance and cost-effectiveness in practical engineering applications. These findings position SBOA as a highly adaptable and efficient optimization tool for addressing complex tasks.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.