David Krone , Erik Esche , Mirko Skiborowski , Jens-Uwe Repke
{"title":"Optimization-based process synthesis by phenomena-based building blocks and an MINLP framework featuring structural screening","authors":"David Krone , Erik Esche , Mirko Skiborowski , Jens-Uwe Repke","doi":"10.1016/j.compchemeng.2024.108955","DOIUrl":null,"url":null,"abstract":"<div><div>An existing approach for optimization-based process synthesis with abstracted phenomena-based building blocks (PBB) is extended by implementing it into a novel MINLP framework with structural screening. Consistency across the multilayer MINLP framework is guaranteed by creating a MathML/XML data model and subsequently exporting the code to the different program parts. The novel framework focuses both on fidelity by implementing thermodynamically sound models and on generality by employing a state-space superstructure that spans a large search space. In order to retain tractability, we insert a structural screening layer which pre-screens based on binary decision variables of the superstructure by graph- and rule-based analyses, penalizing non-physical instances without solution of the underlying MINLP. The MINLP framework is successfully applied on two challenging synthesis tasks to determine the separation of the feed streams of benzene and toluene, as well as of n-pentane, n-hexane, and n-heptane utilizing superstructures with two, respectively four PBB.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108955"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003739","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
An existing approach for optimization-based process synthesis with abstracted phenomena-based building blocks (PBB) is extended by implementing it into a novel MINLP framework with structural screening. Consistency across the multilayer MINLP framework is guaranteed by creating a MathML/XML data model and subsequently exporting the code to the different program parts. The novel framework focuses both on fidelity by implementing thermodynamically sound models and on generality by employing a state-space superstructure that spans a large search space. In order to retain tractability, we insert a structural screening layer which pre-screens based on binary decision variables of the superstructure by graph- and rule-based analyses, penalizing non-physical instances without solution of the underlying MINLP. The MINLP framework is successfully applied on two challenging synthesis tasks to determine the separation of the feed streams of benzene and toluene, as well as of n-pentane, n-hexane, and n-heptane utilizing superstructures with two, respectively four PBB.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.