A reinforcement learning based Lagrangian relaxation algorithm for multi-energy allocation problem in steel enterprise

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-11-28 DOI:10.1016/j.compchemeng.2024.108948
Miao Chang , Shengnan Zhao , Lixin Tang , Jiyin Liu , Yanyan Zhang
{"title":"A reinforcement learning based Lagrangian relaxation algorithm for multi-energy allocation problem in steel enterprise","authors":"Miao Chang ,&nbsp;Shengnan Zhao ,&nbsp;Lixin Tang ,&nbsp;Jiyin Liu ,&nbsp;Yanyan Zhang","doi":"10.1016/j.compchemeng.2024.108948","DOIUrl":null,"url":null,"abstract":"<div><div>The integrated iron and steel enterprises are typically characterized by the presence of multiple energy media that are highly coupled, frequent start-stop cycles of energy conversion equipment, and fluctuations in energy supply and demand. In this paper, we address the problem of byproduct gas-steam-electricity scheduling in iron and steel enterprises to achieve optimal energy distribution and conversion and reduce the energy cost. This optimization problem for the multi-period full energy chain is formulated as a mathematical programming model that considers equipment start-stop cycles, with the objective of minimizing energy system operating cost. A Lagrangian relaxation framework is employed to decouple the energy management model into several independent single schedules. To further improve the algorithm performance, a novel reinforcement learning-based Lagrangian relaxation algorithm (RL-LR) is proposed, which can dynamically set step size coefficients during the iteration process. Numerical results are presented demonstrating that the RL-LR algorithm can achieve higher optimization efficiency.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108948"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003661","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The integrated iron and steel enterprises are typically characterized by the presence of multiple energy media that are highly coupled, frequent start-stop cycles of energy conversion equipment, and fluctuations in energy supply and demand. In this paper, we address the problem of byproduct gas-steam-electricity scheduling in iron and steel enterprises to achieve optimal energy distribution and conversion and reduce the energy cost. This optimization problem for the multi-period full energy chain is formulated as a mathematical programming model that considers equipment start-stop cycles, with the objective of minimizing energy system operating cost. A Lagrangian relaxation framework is employed to decouple the energy management model into several independent single schedules. To further improve the algorithm performance, a novel reinforcement learning-based Lagrangian relaxation algorithm (RL-LR) is proposed, which can dynamically set step size coefficients during the iteration process. Numerical results are presented demonstrating that the RL-LR algorithm can achieve higher optimization efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Editorial Board ChemBERTa embeddings and ensemble learning for prediction of density and melting point of deep eutectic solvents with hybrid features CPU and GPU based acceleration of high-dimensional population balance models via the vectorization and parallelization of multivariate aggregation and breakage integral terms Piecewise linear approximation using J1 compatible triangulations for efficient MILP representation Stochastic algorithm-based optimization using artificial intelligence/machine learning models for sorption enhanced steam methane reformer reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1