The Cenozoic evolution of the Yellow River

IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Earth-Science Reviews Pub Date : 2025-02-01 DOI:10.1016/j.earscirev.2024.104997
Xu Lin , Maximilian Dröllner , Milo Barham , Jing Liu-Zeng , Marc Jolivet , Haijin Liu , Kaige Guan , Chengwei Hu , Xiaokang Chen
{"title":"The Cenozoic evolution of the Yellow River","authors":"Xu Lin ,&nbsp;Maximilian Dröllner ,&nbsp;Milo Barham ,&nbsp;Jing Liu-Zeng ,&nbsp;Marc Jolivet ,&nbsp;Haijin Liu ,&nbsp;Kaige Guan ,&nbsp;Chengwei Hu ,&nbsp;Xiaokang Chen","doi":"10.1016/j.earscirev.2024.104997","DOIUrl":null,"url":null,"abstract":"<div><div>The evolution of rivers is closely tied to basin tectonics and climate change. Consequently, understanding the formation and evolution of large rivers (which can traverse diverse geological units and potentially complex climatic zones) can provide valuable insights into regional to continental tectonic activity and climate change. The Yellow River, which originates in the Tibetan Plateau and flows into the western Pacific Ocean, is the longest river in northern China, spanning approximately 5464 km. Previous research suggests that critical development stages of the Yellow River took place in a punctuated fashion during the Eocene, Miocene, and Pliocene to Pleistocene but the drivers have not been comprehensively investigated. In this study, we examined published U<img>Pb detrital zircon data from sedimentary basins and boreholes in the upper, middle, and lower reaches of the Yellow River (<em>n</em> = 15,976) to resolve the evolution of river segments, as well as the broader catchment. These data were then compared with U<img>Pb zircon data from potential source areas (<em>n</em> = 16,976), with consideration of the reported sedimentology, climate, and tectonic context of the region in order to create a more holistic model of the Yellow River system evolution. The results suggest that the Yellow River catchment developed within a large-scale foreland basin and fault basin, primarily influenced by the subduction of the Indian and Pacific plates towards the Asian continent during the Paleogene. Arid climate conditions during the Paleogene favored the development of an endorheic river system in the Yellow River catchment. During the middle Miocene, what is now considered the upper reaches of the Yellow River flowed from the northeastern Tibetan Plateau into the Yinchuan Basin, influenced by the expansion of the northeastern Tibetan Plateau. Nonetheless, the “proto-Yellow River” (temporal equivalent of the upper and middle reaches of the Yellow River) stayed on the rain-shadow side of the East Asian summer monsoon during this period, resulting in arid climates and the formation of endorheic rivers. What is now considered the lower reaches of the Yellow River, including the Kaifeng, Bohai Bay, and South Yellow Sea basins, developed independent depocenters that were not interconnected during the Miocene. The present-day upper, middle, and lower reaches of the Yellow River were not connected during the middle Miocene. During the Pliocene, the upper Yellow River originated in the Guide and Xining basins and flowed into the Yinchuan Basin. However, the arid climate and fault depression in the Hetao Basin impeded the current upper Yellow River from flowing into the Jinshan Canyon in the middle reaches. During the Pliocene, the temporal equivalent of the middle reaches of the precursor Yellow River had already extended into the Sanmenxia Basin, a state that is referred to here as the eo-Yellow River (the Yellow River began to develop in its middle reaches). During the early and middle Pleistocene, the exhumation of the Tibetan Plateau and the high-amplitude fluctuation of the East Asian summer monsoon drove the development of multiple levels of gravel-dominated fluvial terraces along the present-day upper and middle Yellow River, with increased sedimentation rates and thick sand layers along the lower Yellow River recording the river's strong hydrodynamic transport capability. In the early Pleistocene, the Yellow River achieved interconnection of its present-day upper, middle, and lower reaches. The Cenozoic evolution of the Yellow River catchment exemplifies the complex influence of tectonic activity and climate change on fluvial systems, and ultimately on the denudation of continents. This study advances our understanding of the interplay between Tibetan Plateau exhumation, river evolution, and monsoon climate in East Asia during the Cenozoic.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"261 ","pages":"Article 104997"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012825224003258","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of rivers is closely tied to basin tectonics and climate change. Consequently, understanding the formation and evolution of large rivers (which can traverse diverse geological units and potentially complex climatic zones) can provide valuable insights into regional to continental tectonic activity and climate change. The Yellow River, which originates in the Tibetan Plateau and flows into the western Pacific Ocean, is the longest river in northern China, spanning approximately 5464 km. Previous research suggests that critical development stages of the Yellow River took place in a punctuated fashion during the Eocene, Miocene, and Pliocene to Pleistocene but the drivers have not been comprehensively investigated. In this study, we examined published UPb detrital zircon data from sedimentary basins and boreholes in the upper, middle, and lower reaches of the Yellow River (n = 15,976) to resolve the evolution of river segments, as well as the broader catchment. These data were then compared with UPb zircon data from potential source areas (n = 16,976), with consideration of the reported sedimentology, climate, and tectonic context of the region in order to create a more holistic model of the Yellow River system evolution. The results suggest that the Yellow River catchment developed within a large-scale foreland basin and fault basin, primarily influenced by the subduction of the Indian and Pacific plates towards the Asian continent during the Paleogene. Arid climate conditions during the Paleogene favored the development of an endorheic river system in the Yellow River catchment. During the middle Miocene, what is now considered the upper reaches of the Yellow River flowed from the northeastern Tibetan Plateau into the Yinchuan Basin, influenced by the expansion of the northeastern Tibetan Plateau. Nonetheless, the “proto-Yellow River” (temporal equivalent of the upper and middle reaches of the Yellow River) stayed on the rain-shadow side of the East Asian summer monsoon during this period, resulting in arid climates and the formation of endorheic rivers. What is now considered the lower reaches of the Yellow River, including the Kaifeng, Bohai Bay, and South Yellow Sea basins, developed independent depocenters that were not interconnected during the Miocene. The present-day upper, middle, and lower reaches of the Yellow River were not connected during the middle Miocene. During the Pliocene, the upper Yellow River originated in the Guide and Xining basins and flowed into the Yinchuan Basin. However, the arid climate and fault depression in the Hetao Basin impeded the current upper Yellow River from flowing into the Jinshan Canyon in the middle reaches. During the Pliocene, the temporal equivalent of the middle reaches of the precursor Yellow River had already extended into the Sanmenxia Basin, a state that is referred to here as the eo-Yellow River (the Yellow River began to develop in its middle reaches). During the early and middle Pleistocene, the exhumation of the Tibetan Plateau and the high-amplitude fluctuation of the East Asian summer monsoon drove the development of multiple levels of gravel-dominated fluvial terraces along the present-day upper and middle Yellow River, with increased sedimentation rates and thick sand layers along the lower Yellow River recording the river's strong hydrodynamic transport capability. In the early Pleistocene, the Yellow River achieved interconnection of its present-day upper, middle, and lower reaches. The Cenozoic evolution of the Yellow River catchment exemplifies the complex influence of tectonic activity and climate change on fluvial systems, and ultimately on the denudation of continents. This study advances our understanding of the interplay between Tibetan Plateau exhumation, river evolution, and monsoon climate in East Asia during the Cenozoic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth-Science Reviews
Earth-Science Reviews 地学-地球科学综合
CiteScore
21.70
自引率
5.80%
发文量
294
审稿时长
15.1 weeks
期刊介绍: Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.
期刊最新文献
Evolutionary paleoecology of macroscopic symbiotic endobionts in Phanerozoic corals Effects of serpentinization and deserpentinization on rock elastic properties in subduction zones The Hf and O isotope record of long-lasting accretionary orogens: The example of the Proterozoic and Paleozoic-Triassic central South America Multi-episode metamorphism and magmatism in the Paleozoic Altyn Orogen, West China: Implications for the tectonic evolution of the Proto-Tethys Ocean An overview of observed changes in precipitation totals and extremes over global land, with a focus on Africa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1