Cunbo Zhuang , Lei Zhang , Shimin Liu , Jiewu Leng , Jianhua Liu , Fengque Pei
{"title":"Digital twin-based smart shop-floor management and control: A review","authors":"Cunbo Zhuang , Lei Zhang , Shimin Liu , Jiewu Leng , Jianhua Liu , Fengque Pei","doi":"10.1016/j.aei.2024.103102","DOIUrl":null,"url":null,"abstract":"<div><div>Propelled by the latest advancements in information technology, shop-floor management and control (SMC) is transitioning towards a more intelligent paradigm, predominantly marked by data-driven insights and the integration of virtual reality. The digital twin (DT) stands out as a pivotal technology for the realization of cyber-physical systems, and its role in smart shop-floor management and control (SSMC) has attracted significant interest from both the industrial sector and academic circles. However, the application of DT in achieving SSMC remains diverse and lacks a structured methodology. In light of this, this review provides an in-depth analysis and discussion of the current state, limitations, and prospective trends of DT in SSMC. Initially, a DT-based SSMC framework is introduced to guide the subsequent literature review and thematic discussions. This is followed by an examination of DT-based SSMC research across four key dimensions: the development of shop-floor DT models, dynamic monitoring and forecasting of the shop-floor leveraging DT, DT-assisted shop-floor scheduling, and DT-driven production process control. The review culminates with an outline of challenges and future research directions for DT-based SSMC. This comprehensive review not only enhances researchers’ comprehension of SSMC but also offers a valuable reference for the continued application and integration of DT within this domain.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103102"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624007535","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Propelled by the latest advancements in information technology, shop-floor management and control (SMC) is transitioning towards a more intelligent paradigm, predominantly marked by data-driven insights and the integration of virtual reality. The digital twin (DT) stands out as a pivotal technology for the realization of cyber-physical systems, and its role in smart shop-floor management and control (SSMC) has attracted significant interest from both the industrial sector and academic circles. However, the application of DT in achieving SSMC remains diverse and lacks a structured methodology. In light of this, this review provides an in-depth analysis and discussion of the current state, limitations, and prospective trends of DT in SSMC. Initially, a DT-based SSMC framework is introduced to guide the subsequent literature review and thematic discussions. This is followed by an examination of DT-based SSMC research across four key dimensions: the development of shop-floor DT models, dynamic monitoring and forecasting of the shop-floor leveraging DT, DT-assisted shop-floor scheduling, and DT-driven production process control. The review culminates with an outline of challenges and future research directions for DT-based SSMC. This comprehensive review not only enhances researchers’ comprehension of SSMC but also offers a valuable reference for the continued application and integration of DT within this domain.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.