Large language model assisted fine-grained knowledge graph construction for robotic fault diagnosis

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2025-01-23 DOI:10.1016/j.aei.2025.103134
Xingming Liao , Chong Chen , Zhuowei Wang , Ying Liu , Tao Wang , Lianglun Cheng
{"title":"Large language model assisted fine-grained knowledge graph construction for robotic fault diagnosis","authors":"Xingming Liao ,&nbsp;Chong Chen ,&nbsp;Zhuowei Wang ,&nbsp;Ying Liu ,&nbsp;Tao Wang ,&nbsp;Lianglun Cheng","doi":"10.1016/j.aei.2025.103134","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid deployment of industrial robots in manufacturing, the demand for advanced maintenance techniques to sustain operational efficiency has become crucial. Fault diagnosis Knowledge Graph (KG) is essential as it interlinks multi-source data related to industrial robot faults, capturing multi-level semantic associations among different fault events. However, the construction and application of fine-grained fault diagnosis KG face significant challenges due to the inherent complexity of nested entities in maintenance texts and the severe scarcity of annotated industrial data. In this study, we propose a Large Language Model (LLM) assisted data augmentation approach, which handles the complex nested entities in maintenance corpora and constructs a more fine-grained fault diagnosis KG. Firstly, the fine-grained ontology is constructed via LLM Assistance in Industrial Nested Named Entity Recognition (assInNNER). Then, an Industrial Nested Label Classification Template (INCT) is designed, enabling the use of nested entities in Attention-map aware keyword selection for the Industrial Nested Language Model (ANLM) data augmentation methods. ANLM can effectively improve the model’s performance in nested entity extraction when corpora are scarce. Subsequently, a Confidence Filtering Mechanism (CFM) is introduced to evaluate and select the generated data for enhancement, and assInNNER is further deployed to recall the negative samples corpus again to further improve performance. Experimental studies based on multi-source corpora demonstrate that compared to existing algorithms, our method achieves an average F1 increase of 8.25 %, 3.31 %, and 1.96 % in 5%, 10 %, and 25 % in few-shot settings, respectively.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103134"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625000278","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid deployment of industrial robots in manufacturing, the demand for advanced maintenance techniques to sustain operational efficiency has become crucial. Fault diagnosis Knowledge Graph (KG) is essential as it interlinks multi-source data related to industrial robot faults, capturing multi-level semantic associations among different fault events. However, the construction and application of fine-grained fault diagnosis KG face significant challenges due to the inherent complexity of nested entities in maintenance texts and the severe scarcity of annotated industrial data. In this study, we propose a Large Language Model (LLM) assisted data augmentation approach, which handles the complex nested entities in maintenance corpora and constructs a more fine-grained fault diagnosis KG. Firstly, the fine-grained ontology is constructed via LLM Assistance in Industrial Nested Named Entity Recognition (assInNNER). Then, an Industrial Nested Label Classification Template (INCT) is designed, enabling the use of nested entities in Attention-map aware keyword selection for the Industrial Nested Language Model (ANLM) data augmentation methods. ANLM can effectively improve the model’s performance in nested entity extraction when corpora are scarce. Subsequently, a Confidence Filtering Mechanism (CFM) is introduced to evaluate and select the generated data for enhancement, and assInNNER is further deployed to recall the negative samples corpus again to further improve performance. Experimental studies based on multi-source corpora demonstrate that compared to existing algorithms, our method achieves an average F1 increase of 8.25 %, 3.31 %, and 1.96 % in 5%, 10 %, and 25 % in few-shot settings, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
Intelligent wireless tool wear monitoring system based on chucked tool condition monitoring ring and deep learning Correlation-aware constrained many-objective service composition in crowdsourcing design Small dense Mini/Micro LED high-precision inspection based on instance segmentation with local detail enhancement ATSIU: A large-scale dataset for spoken instruction understanding in air traffic control A novel multi-task fault detection model embedded with spatio-temporal feature fusion for wind turbine pitch and drive train systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1