Numerical simulation of gas kick evolution and wellbore pressure response characteristics during the deepwater dual gradient drilling

IF 6 1区 工程技术 Q2 ENERGY & FUELS Petroleum Science Pub Date : 2025-01-01 DOI:10.1016/j.petsci.2024.12.010
Geng Zhang , Hong-Wei Yang , Jun Li , Hui Zhang , Hong-Lin Huang , Biao Wang , Wen-Xu Wang , Hao Chen
{"title":"Numerical simulation of gas kick evolution and wellbore pressure response characteristics during the deepwater dual gradient drilling","authors":"Geng Zhang ,&nbsp;Hong-Wei Yang ,&nbsp;Jun Li ,&nbsp;Hui Zhang ,&nbsp;Hong-Lin Huang ,&nbsp;Biao Wang ,&nbsp;Wen-Xu Wang ,&nbsp;Hao Chen","doi":"10.1016/j.petsci.2024.12.010","DOIUrl":null,"url":null,"abstract":"<div><div>The gas kick represents a major risk in deepwater oil and gas exploration. Understanding the dynamics of gas kick evolution and the associated pressure response characteristics is critical for effective well control. In this paper, we introduce a transient wellbore multiphase flow model specifically developed to simulate gas kick in deepwater dual-gradient drilling, incorporating a downhole separator. The model accounts for the variable mass flow within the annulus and heat exchange between the annular fluid and the formation. Using this model, we analyzed the multiphase flow and thermodynamic behavior during the gas kick. Simulation results reveal a progressive increase in bottom-hole temperature, underscoring its potential as a key indicator for gas kick early detection. Additionally, variable gradient parameters affect not only the annular equivalent circulating density (ECD) profile but also the evolution of the gas kick. The inclusion of a downhole separator alters the annular ECD profile, creating a “broken line” shape, which enhances adaptability to the multi-pressure systems typically encountered in deepwater formation. By adjusting factors such as hollow sphere concentration, separator position, and separation efficiency, the annular ECD profile can be effectively customized. This study provides important theoretical insights and practical applications for utilizing dual-gradient drilling technology to address challenges in deepwater formation drilling.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":"22 1","pages":"Pages 398-412"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624003157","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The gas kick represents a major risk in deepwater oil and gas exploration. Understanding the dynamics of gas kick evolution and the associated pressure response characteristics is critical for effective well control. In this paper, we introduce a transient wellbore multiphase flow model specifically developed to simulate gas kick in deepwater dual-gradient drilling, incorporating a downhole separator. The model accounts for the variable mass flow within the annulus and heat exchange between the annular fluid and the formation. Using this model, we analyzed the multiphase flow and thermodynamic behavior during the gas kick. Simulation results reveal a progressive increase in bottom-hole temperature, underscoring its potential as a key indicator for gas kick early detection. Additionally, variable gradient parameters affect not only the annular equivalent circulating density (ECD) profile but also the evolution of the gas kick. The inclusion of a downhole separator alters the annular ECD profile, creating a “broken line” shape, which enhances adaptability to the multi-pressure systems typically encountered in deepwater formation. By adjusting factors such as hollow sphere concentration, separator position, and separation efficiency, the annular ECD profile can be effectively customized. This study provides important theoretical insights and practical applications for utilizing dual-gradient drilling technology to address challenges in deepwater formation drilling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Petroleum Science
Petroleum Science 地学-地球化学与地球物理
CiteScore
7.70
自引率
16.10%
发文量
311
审稿时长
63 days
期刊介绍: Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.
期刊最新文献
Coupled effects of paleofluid evolution on ultra-deep microbialite reservoir modification: A case study of the upper Ediacaran Deng-2 member within the Penglai area of Central Sichuan Basin, SW China Deciphering origins of hydrocarbon deposits by means of intramolecular carbon isotopes of propane adsorbed on sediments Pore formation and evolution mechanisms during hydrocarbon generation in organic-rich marl Mg-C-O isotopes and elements reveal the origin of dolostone in the Middle Jurassic Buqu Formation Machine learning approaches for assessing stability in acid-crude oil emulsions: Application to mitigate formation damage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1