Effect of preprocessing on performances of machine learning-based mineral composition analysis on gas hydrate sediments, Ulleung Basin, East Sea

IF 6 1区 工程技术 Q2 ENERGY & FUELS Petroleum Science Pub Date : 2025-01-01 DOI:10.1016/j.petsci.2024.11.012
Hongkeun Jin , Ju Young Park , Sun Young Park , Byeong-Kook Son , Baehyun Min , Kyungbook Lee
{"title":"Effect of preprocessing on performances of machine learning-based mineral composition analysis on gas hydrate sediments, Ulleung Basin, East Sea","authors":"Hongkeun Jin ,&nbsp;Ju Young Park ,&nbsp;Sun Young Park ,&nbsp;Byeong-Kook Son ,&nbsp;Baehyun Min ,&nbsp;Kyungbook Lee","doi":"10.1016/j.petsci.2024.11.012","DOIUrl":null,"url":null,"abstract":"<div><div>Gas hydrate (GH) is an unconventional resource estimated at 1000–120,000 trillion m<sup>3</sup> worldwide. Research on GH is ongoing to determine its geological and flow characteristics for commercial production. After two large-scale drilling expeditions to study the GH-bearing zone in the Ulleung Basin, the mineral composition of 488 sediment samples was analyzed using X-ray diffraction (XRD). Because the analysis is costly and dependent on experts, a machine learning model was developed to predict the mineral composition using XRD intensity profiles as input data. However, the model’s performance was limited because of improper preprocessing of the intensity profile. Because preprocessing was applied to each feature, the intensity trend was not preserved even though this factor is the most important when analyzing mineral composition. In this study, the profile was preprocessed for each sample using min-max scaling because relative intensity is critical for mineral analysis. For 49 test data among the 488 data, the convolutional neural network (CNN) model improved the average absolute error and coefficient of determination by 41% and 46%, respectively, than those of CNN model with feature-based preprocessing. This study confirms that combining preprocessing for each sample with CNN is the most efficient approach for analyzing XRD data. The developed model can be used for the compositional analysis of sediment samples from the Ulleung Basin and the Korea Plateau. In addition, the overall procedure can be applied to any XRD data of sediments worldwide.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":"22 1","pages":"Pages 151-162"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624003005","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Gas hydrate (GH) is an unconventional resource estimated at 1000–120,000 trillion m3 worldwide. Research on GH is ongoing to determine its geological and flow characteristics for commercial production. After two large-scale drilling expeditions to study the GH-bearing zone in the Ulleung Basin, the mineral composition of 488 sediment samples was analyzed using X-ray diffraction (XRD). Because the analysis is costly and dependent on experts, a machine learning model was developed to predict the mineral composition using XRD intensity profiles as input data. However, the model’s performance was limited because of improper preprocessing of the intensity profile. Because preprocessing was applied to each feature, the intensity trend was not preserved even though this factor is the most important when analyzing mineral composition. In this study, the profile was preprocessed for each sample using min-max scaling because relative intensity is critical for mineral analysis. For 49 test data among the 488 data, the convolutional neural network (CNN) model improved the average absolute error and coefficient of determination by 41% and 46%, respectively, than those of CNN model with feature-based preprocessing. This study confirms that combining preprocessing for each sample with CNN is the most efficient approach for analyzing XRD data. The developed model can be used for the compositional analysis of sediment samples from the Ulleung Basin and the Korea Plateau. In addition, the overall procedure can be applied to any XRD data of sediments worldwide.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Petroleum Science
Petroleum Science 地学-地球化学与地球物理
CiteScore
7.70
自引率
16.10%
发文量
311
审稿时长
63 days
期刊介绍: Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.
期刊最新文献
Characterization of petrophysical and seismic properties for CO2 storage with sensitivity analysis Exceptional functionalized dual-acidic ionic liquid: High-efficiency catalytic reaction medium for oxidation desulfurization Machine learning-based grayscale analyses for lithofacies identification of the Shahejie formation, Bohai Bay Basin, China New alkylbenzene parameters to identify organic matter sources for source rocks of light oils and condensates from the Tarim Basin and Beibuwan Basin Integrating well logs, 3D seismic, and earthquake data for comprehensive prediction of 3D in-situ stress orientations: A case study from the Weiyuan area in the Sichuan Basin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1