Carbon fibers-lignocellulosic foam with excellent mechanical, flame retardant and antistatic characteristics

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Sustainable Materials and Technologies Pub Date : 2024-12-17 DOI:10.1016/j.susmat.2024.e01218
Long Li , Zhuhan Xu , Yikui Zhu , Mengting Ye , Pengbo Lu , Xiuru Su , Lihuan Mo , Zhan Liu , Azadeh Nilghaz , Junfei Tian , Jun Li
{"title":"Carbon fibers-lignocellulosic foam with excellent mechanical, flame retardant and antistatic characteristics","authors":"Long Li ,&nbsp;Zhuhan Xu ,&nbsp;Yikui Zhu ,&nbsp;Mengting Ye ,&nbsp;Pengbo Lu ,&nbsp;Xiuru Su ,&nbsp;Lihuan Mo ,&nbsp;Zhan Liu ,&nbsp;Azadeh Nilghaz ,&nbsp;Junfei Tian ,&nbsp;Jun Li","doi":"10.1016/j.susmat.2024.e01218","DOIUrl":null,"url":null,"abstract":"<div><div>Petroleum-based plastic foam is the most widely used cushioning material in the packaging and transporting of electronic products. However, its non-degradability and difficulty in recycling lead to serious environment burdens as large quantities are piled up and incinerated after use. Lignocellulosic foam with its natural, biodegradable and recyclable attributes has been introduced as an alternative product for petroleum-based foam. However, low mechanical strength, high insulation, and flammability of lignocellulosic foam limit their application in electronic products. In this study, porous and low-density carbon fiber lignocellulosic foams (CNF-APP-CFs) were synthesized by a mixture of nanocellulose, ammonium polyphosphate, carbon fiber, and lignocellulosic compounds at different ratio. The resulting foams had excellent mechanical properties, flame retardancy, and antistatic strain behavior, with the most substantial improvements observed in the foam containing 7 % carbon fiber which increased mechanical properties by 81.6 % and enhanced flame retardancy by 13.09 %. This work provides a feasible solution to mitigate the environmental hazards of petroleum-based plastic foams.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"43 ","pages":"Article e01218"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724003981","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Petroleum-based plastic foam is the most widely used cushioning material in the packaging and transporting of electronic products. However, its non-degradability and difficulty in recycling lead to serious environment burdens as large quantities are piled up and incinerated after use. Lignocellulosic foam with its natural, biodegradable and recyclable attributes has been introduced as an alternative product for petroleum-based foam. However, low mechanical strength, high insulation, and flammability of lignocellulosic foam limit their application in electronic products. In this study, porous and low-density carbon fiber lignocellulosic foams (CNF-APP-CFs) were synthesized by a mixture of nanocellulose, ammonium polyphosphate, carbon fiber, and lignocellulosic compounds at different ratio. The resulting foams had excellent mechanical properties, flame retardancy, and antistatic strain behavior, with the most substantial improvements observed in the foam containing 7 % carbon fiber which increased mechanical properties by 81.6 % and enhanced flame retardancy by 13.09 %. This work provides a feasible solution to mitigate the environmental hazards of petroleum-based plastic foams.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
期刊最新文献
Reusing cellulose acetate microplastic fibres derived from discarded cigarette butts as superior adsorbent for lead ions: UV ageing, adsorption mechanisms and DOM investigation Single-component low-carbon sustainable geopolymer synthesis using calcium carbide residue, gypsum, sewage sludge ash, and ground granulated blast slag Mixed fatty acid cellulose esters from diosmectite oxalate-assisted surface esterification. Investigating properties, techno-economics and sustainability Azobisisobutyronitrile-induced biocarbon with high edge-nitrogen density: A metal-free redox-catalyst for electrochemical detection and reduction of 4-nitrophenol Aqueous synthesis of bio-based multifunctional additives for polylactic acid with flame retardation, expedited degradation and crystallization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1