{"title":"BFL-SC: A blockchain-enabled federated learning framework, with smart contracts, for securing social media-integrated internet of things systems","authors":"Sara Salim, Nour Moustafa, Benjamin Turnbull","doi":"10.1016/j.adhoc.2025.103760","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of Social Media (SM) and the Internet of Things (IoT) is gradually transforming the activities of SM users into valuable data streams that can be analyzed using Machine Learning (ML) algorithms. Federated Learning (FL) has been widely employed to predict user and anomaly behaviors from distributed systems. However, FL encounters substantial security challenges, particularly within the context of SM-integrated IoT systems, known as SM 3.0 systems. These challenges encompass issues of accountability and vulnerabilities that render them susceptible to various cyberattacks, including single-point-of-failure, free-riding, model inversion, and poisoning attacks. We propose a Blockchain-enabled FL with Smart Contracts (SC) (BFL-SC) framework. To coordinate the learning process, track participants’ contributions and reward the participants transparently, an SC-based FL is constructed as an incentive mechanism that combats free-riding attacks and enables automated and auditable rewarding of the participants. Also, to conceal the original data points and mitigate the impact of model inversion attacks, a Differentially Privacy-based Perturbation (DPP) mechanism is proposed. To address potential poisoning attacks, a thorough verification protocol is suggested. The experimental results obtained from two datasets, namely SM 3.0 and Human Activity Recognition (HAR), show that the BFL-SC framework can achieve high utility with a precision of 96.95% over the SM 3.0 dataset and 90.14% over the HAR dataset while adhering to privacy and efficiency standards, compared with compelling techniques.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"169 ","pages":"Article 103760"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870525000083","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of Social Media (SM) and the Internet of Things (IoT) is gradually transforming the activities of SM users into valuable data streams that can be analyzed using Machine Learning (ML) algorithms. Federated Learning (FL) has been widely employed to predict user and anomaly behaviors from distributed systems. However, FL encounters substantial security challenges, particularly within the context of SM-integrated IoT systems, known as SM 3.0 systems. These challenges encompass issues of accountability and vulnerabilities that render them susceptible to various cyberattacks, including single-point-of-failure, free-riding, model inversion, and poisoning attacks. We propose a Blockchain-enabled FL with Smart Contracts (SC) (BFL-SC) framework. To coordinate the learning process, track participants’ contributions and reward the participants transparently, an SC-based FL is constructed as an incentive mechanism that combats free-riding attacks and enables automated and auditable rewarding of the participants. Also, to conceal the original data points and mitigate the impact of model inversion attacks, a Differentially Privacy-based Perturbation (DPP) mechanism is proposed. To address potential poisoning attacks, a thorough verification protocol is suggested. The experimental results obtained from two datasets, namely SM 3.0 and Human Activity Recognition (HAR), show that the BFL-SC framework can achieve high utility with a precision of 96.95% over the SM 3.0 dataset and 90.14% over the HAR dataset while adhering to privacy and efficiency standards, compared with compelling techniques.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.