Spatial distribution of landslides triggered by the 2022 Taitung Earthquakes in relation to active fault systems, topographic effects, and geological conditions

IF 3.1 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL Geomorphology Pub Date : 2025-01-20 DOI:10.1016/j.geomorph.2025.109615
Chi-Wen Chen , Lun-Wei Wei , Ryuji Yamada , Tomoyuki Iida
{"title":"Spatial distribution of landslides triggered by the 2022 Taitung Earthquakes in relation to active fault systems, topographic effects, and geological conditions","authors":"Chi-Wen Chen ,&nbsp;Lun-Wei Wei ,&nbsp;Ryuji Yamada ,&nbsp;Tomoyuki Iida","doi":"10.1016/j.geomorph.2025.109615","DOIUrl":null,"url":null,"abstract":"<div><div>In September 2022, eastern Taiwan was shaken by a series of earthquakes, known as the 2022 Taitung earthquakes. A total of 45 landslides were triggered by the earthquakes, and the frequency-area distribution revealed a scarcity of small- and large-scale landslides. Most of the landslides were moderate in scale, with areas ranging from 10<sup>3</sup> to 10<sup>4</sup> m<sup>2</sup>. We examined the relationship between the landslide distribution and earthquake source faults. The distances between landslides and active faults ranged from 0.82 to 17.65 km. The results allowed us to infer parameters of the source faults and the magnitudes of the earthquakes using a model proposed in a previous study, which aligns with the real situation. Furthermore, we analyzed the topographic and geological conditions associated with landslide distribution. We found that most landslides occurred on mid-hillsides or in close proximity to streams, in contrast to the findings of previous studies that highlighted ridge areas as the primary locations of coseismic landslides. As the source fault in this study is situated in a valley, with a flat plain on both sides, only six landslides occurred within 3 km of the fault. Seismic waves transmitted to distant mountains were attenuated and lacked the strength to have amplification on ridges. Because the seismic waves failed to reach higher mountains, the landslides predominantly occurred at lower elevations on steep slopes with more fragile geological conditions. Based on the comprehensive conditions of fault type and surrounding topography and geology, the landslides mostly occurred on mid-hillsides rather than on ridges.</div></div>","PeriodicalId":55115,"journal":{"name":"Geomorphology","volume":"473 ","pages":"Article 109615"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomorphology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169555X2500025X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In September 2022, eastern Taiwan was shaken by a series of earthquakes, known as the 2022 Taitung earthquakes. A total of 45 landslides were triggered by the earthquakes, and the frequency-area distribution revealed a scarcity of small- and large-scale landslides. Most of the landslides were moderate in scale, with areas ranging from 103 to 104 m2. We examined the relationship between the landslide distribution and earthquake source faults. The distances between landslides and active faults ranged from 0.82 to 17.65 km. The results allowed us to infer parameters of the source faults and the magnitudes of the earthquakes using a model proposed in a previous study, which aligns with the real situation. Furthermore, we analyzed the topographic and geological conditions associated with landslide distribution. We found that most landslides occurred on mid-hillsides or in close proximity to streams, in contrast to the findings of previous studies that highlighted ridge areas as the primary locations of coseismic landslides. As the source fault in this study is situated in a valley, with a flat plain on both sides, only six landslides occurred within 3 km of the fault. Seismic waves transmitted to distant mountains were attenuated and lacked the strength to have amplification on ridges. Because the seismic waves failed to reach higher mountains, the landslides predominantly occurred at lower elevations on steep slopes with more fragile geological conditions. Based on the comprehensive conditions of fault type and surrounding topography and geology, the landslides mostly occurred on mid-hillsides rather than on ridges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geomorphology
Geomorphology 地学-地球科学综合
CiteScore
8.00
自引率
10.30%
发文量
309
审稿时长
3.4 months
期刊介绍: Our journal''s scope includes geomorphic themes of: tectonics and regional structure; glacial processes and landforms; fluvial sequences, Quaternary environmental change and dating; fluvial processes and landforms; mass movement, slopes and periglacial processes; hillslopes and soil erosion; weathering, karst and soils; aeolian processes and landforms, coastal dunes and arid environments; coastal and marine processes, estuaries and lakes; modelling, theoretical and quantitative geomorphology; DEM, GIS and remote sensing methods and applications; hazards, applied and planetary geomorphology; and volcanics.
期刊最新文献
Editorial Board Response to sea-level change in a non-deltaic coastal plain: Insights from cores chronologies Kura (Mtkvari) River terraces record fluvial response to the collision of the Greater and Lesser Caucasus thrust belts, Georgia Spatial provenance distributions in the Chinese Loess Plateau and implication for reconstruction of desert margin Rapid and large-scale landscape modification caused by the draining of a glacier-dammed lake in British Columbia, Canada
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1