{"title":"Ti2AlNb microlattices via 3D ink-extrusion printing and sintering of precursor powders","authors":"Ya-Chu Hsu, David C. Dunand","doi":"10.1016/j.addma.2025.104673","DOIUrl":null,"url":null,"abstract":"<div><div>Microlattices are 3D-extruded with inks containing a blend of precursor Ti + Nb + TiAl<sub>3</sub> powders, and their struts are then densified through a series of heat treatments to eliminate organic binder, sinter porosity, and achieve compositional Ti<sub>2</sub>AlNb homogeneity. The phase evolution of an as-printed filament (representative of a microlattice strut) is examined using <em>in-situ</em> X-ray diffraction, revealing a series of steps: (i) TiAl<sub>3</sub> decomposition, starting at 710 °C and ending at 780 °C, to form TiAl; (ii) Nb and Al interdiffusion, initiating at 820 °C, accompanied by the formation of Nb<sub>2</sub>Al and Nb<sub>3</sub>Al phases; (iii) the α→β Ti phase transformation and (iv) Ti<sub>3</sub>Al formation, starting at 870 °C. Fully-homogenized Ti<sub>2</sub>AlNb microstructures with low residual porosity, comprising a B2 matrix and two types of α<sub>2</sub> and O (orthorhombic) secondary phases, are achieved after sintering at 1300 °C for 5 h. Under compression at 1000 °C, microlattices with struts ∼400 µm in diameter show a good combination of yield strength (138 MPa) and ductility (48 %, with no catastrophic failure). Because of their low density (∼3 g/cm<sup>3</sup>) and high strength at high temperatures, Ti<sub>2</sub>AlNb microlattices exhibit a specific strength higher than existing Ni- and Co-based superalloy microlattices above 900 °C. Finally, a complex Ti<sub>2</sub>AlNb prototype heat exchanger is created <em>via</em> layer-by-layer ink-extrusion and sintering.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"99 ","pages":"Article 104673"},"PeriodicalIF":10.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425000375","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Microlattices are 3D-extruded with inks containing a blend of precursor Ti + Nb + TiAl3 powders, and their struts are then densified through a series of heat treatments to eliminate organic binder, sinter porosity, and achieve compositional Ti2AlNb homogeneity. The phase evolution of an as-printed filament (representative of a microlattice strut) is examined using in-situ X-ray diffraction, revealing a series of steps: (i) TiAl3 decomposition, starting at 710 °C and ending at 780 °C, to form TiAl; (ii) Nb and Al interdiffusion, initiating at 820 °C, accompanied by the formation of Nb2Al and Nb3Al phases; (iii) the α→β Ti phase transformation and (iv) Ti3Al formation, starting at 870 °C. Fully-homogenized Ti2AlNb microstructures with low residual porosity, comprising a B2 matrix and two types of α2 and O (orthorhombic) secondary phases, are achieved after sintering at 1300 °C for 5 h. Under compression at 1000 °C, microlattices with struts ∼400 µm in diameter show a good combination of yield strength (138 MPa) and ductility (48 %, with no catastrophic failure). Because of their low density (∼3 g/cm3) and high strength at high temperatures, Ti2AlNb microlattices exhibit a specific strength higher than existing Ni- and Co-based superalloy microlattices above 900 °C. Finally, a complex Ti2AlNb prototype heat exchanger is created via layer-by-layer ink-extrusion and sintering.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.