Comprehensive spray characterization of air-assisted impinging jet atomizer for carbon capture applications

IF 3.6 2区 工程技术 Q1 MECHANICS International Journal of Multiphase Flow Pub Date : 2025-01-01 DOI:10.1016/j.ijmultiphaseflow.2025.105123
Vignesh Kumar Dhinasekaran , Ondrej Cejpek , Milan Maly , Jan Jedelsky , Madan Mohan Avulapati
{"title":"Comprehensive spray characterization of air-assisted impinging jet atomizer for carbon capture applications","authors":"Vignesh Kumar Dhinasekaran ,&nbsp;Ondrej Cejpek ,&nbsp;Milan Maly ,&nbsp;Jan Jedelsky ,&nbsp;Madan Mohan Avulapati","doi":"10.1016/j.ijmultiphaseflow.2025.105123","DOIUrl":null,"url":null,"abstract":"<div><div>Spray scrubbing for carbon dioxide (CO<sub>2</sub>) absorption has attracted research interest because it is a viable retrofitting option for existing power plants. For effective absorption, desired spray characteristics must be attained for a wide range of absorbent liquids with distinct physical properties. In this study, an air‑assisted impinging jet atomizer was evaluated to determine its suitability for CO<sub>2</sub> absorption using monoethanolamine (MEA). The study focused on understanding the influence of various physical parameters on the overall atomization process. Spray experiments were performed under quiescent atmospheric conditions at different liquid flow rates and air-to-liquid mass flow rate ratios (<em>ALR</em>). High-speed imaging and laser diffraction techniques were used for spray visualization and droplet size characterization, respectively. The study revealed that the primary atomization was either a hydrodynamic mode of breakup caused by hydrodynamic instabilities in a liquid sheet or an aerodynamic mode of breakup, where the breakup was dominated by gas-liquid interaction. A transition between these breakup processes occurred at an air-to-liquid momentum ratio of ∼0.6, and a gas Weber number of ∼30. Improved atomization was obtained in the aerodynamic mode of the breakup. A Sauter mean diameter (<em>SMD</em>) of the order of 60 µm, along with a narrow size distribution, was obtained at high liquid flow rates, even at an <em>ALR</em> of 4 %. Furthermore, empirical correlations were proposed for <em>SMD</em> and spray angle as functions of gas Weber number, liquid Weber number, and Ohnesorge number. The detailed spray characterization performed in this study provides valuable insights into the atomization process of an air-assisted impinging jet atomizer and is crucial for testing this atomizer configuration in a spray column for CO<sub>2</sub> capture.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"184 ","pages":"Article 105123"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932225000011","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spray scrubbing for carbon dioxide (CO2) absorption has attracted research interest because it is a viable retrofitting option for existing power plants. For effective absorption, desired spray characteristics must be attained for a wide range of absorbent liquids with distinct physical properties. In this study, an air‑assisted impinging jet atomizer was evaluated to determine its suitability for CO2 absorption using monoethanolamine (MEA). The study focused on understanding the influence of various physical parameters on the overall atomization process. Spray experiments were performed under quiescent atmospheric conditions at different liquid flow rates and air-to-liquid mass flow rate ratios (ALR). High-speed imaging and laser diffraction techniques were used for spray visualization and droplet size characterization, respectively. The study revealed that the primary atomization was either a hydrodynamic mode of breakup caused by hydrodynamic instabilities in a liquid sheet or an aerodynamic mode of breakup, where the breakup was dominated by gas-liquid interaction. A transition between these breakup processes occurred at an air-to-liquid momentum ratio of ∼0.6, and a gas Weber number of ∼30. Improved atomization was obtained in the aerodynamic mode of the breakup. A Sauter mean diameter (SMD) of the order of 60 µm, along with a narrow size distribution, was obtained at high liquid flow rates, even at an ALR of 4 %. Furthermore, empirical correlations were proposed for SMD and spray angle as functions of gas Weber number, liquid Weber number, and Ohnesorge number. The detailed spray characterization performed in this study provides valuable insights into the atomization process of an air-assisted impinging jet atomizer and is crucial for testing this atomizer configuration in a spray column for CO2 capture.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
期刊最新文献
Towards quantitative prediction of droplet collision outcomes: A dual-VOF approach with rarefied gas effect and augmented van der Waals force Experimental analysis of velocity field characteristics within bubble wakes in fiber bundle Numerical simulation of tip vortex cavitation using a multiscale method Single-plume and multi-plume atomisation of ethanol with different levels of water content at hot fuel conditions Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1