{"title":"DALSCLIP: Domain aggregation via learning stronger domain-invariant features for CLIP","authors":"Yuewen Zhang , Jiuhang Wang , Hongying Tang , Ronghua Qin","doi":"10.1016/j.imavis.2024.105359","DOIUrl":null,"url":null,"abstract":"<div><div>When the test data follows a different distribution from the training data, neural networks experience domain shift. We can address this issue with domain generalization (DG), which aims to develop models that can perform well on unknown domains. In this paper, we propose a simple yet effective framework called DALSCLIP to achieve high-performance generalization of CLIP, Contrastive LanguageImage Pre-training, in DG. Specifically, we optimize CLIP in two aspects: images and prompts. For images, we propose a method to remove domain-specific features from input images and learn better domain-invariant features. We first train specific classifiers for each domain to learn their corresponding domain-specific information and then learn a mapping to remove domain-specific information. For prompts, we design a lightweight optimizer(Attention-based MLP) to automatically optimize the prompts and incorporate domain-specific information into the input, helping the prompts better adapt to the domain. Meanwhile, we freeze the network parameters during training to maximize the retention of pre-training model information. We extensively evaluate our model on three public datasets. Qualitative and quantitative experiments demonstrate that our framework outperforms other baselines significantly.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"154 ","pages":"Article 105359"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624004645","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
When the test data follows a different distribution from the training data, neural networks experience domain shift. We can address this issue with domain generalization (DG), which aims to develop models that can perform well on unknown domains. In this paper, we propose a simple yet effective framework called DALSCLIP to achieve high-performance generalization of CLIP, Contrastive LanguageImage Pre-training, in DG. Specifically, we optimize CLIP in two aspects: images and prompts. For images, we propose a method to remove domain-specific features from input images and learn better domain-invariant features. We first train specific classifiers for each domain to learn their corresponding domain-specific information and then learn a mapping to remove domain-specific information. For prompts, we design a lightweight optimizer(Attention-based MLP) to automatically optimize the prompts and incorporate domain-specific information into the input, helping the prompts better adapt to the domain. Meanwhile, we freeze the network parameters during training to maximize the retention of pre-training model information. We extensively evaluate our model on three public datasets. Qualitative and quantitative experiments demonstrate that our framework outperforms other baselines significantly.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.