Information gap based knowledge distillation for occluded facial expression recognition

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Image and Vision Computing Pub Date : 2025-02-01 DOI:10.1016/j.imavis.2024.105365
Yan Zhang , Zenghui Li , Duo Shen , Ke Wang , Jia Li , Chenxing Xia
{"title":"Information gap based knowledge distillation for occluded facial expression recognition","authors":"Yan Zhang ,&nbsp;Zenghui Li ,&nbsp;Duo Shen ,&nbsp;Ke Wang ,&nbsp;Jia Li ,&nbsp;Chenxing Xia","doi":"10.1016/j.imavis.2024.105365","DOIUrl":null,"url":null,"abstract":"<div><div>Facial Expression Recognition (FER) with occlusion presents a challenging task in computer vision because facial occlusions result in poor visual data features. Recently, the region attention technique has been introduced to address this problem by researchers, which make the model perceive occluded regions of the face and prioritize the most discriminative non-occluded regions. However, in real-world scenarios, facial images are influenced by various factors, including hair, masks and sunglasses, making it difficult to extract high-quality features from these occluded facial images. This inevitably limits the effectiveness of attention mechanisms. In this paper, we observe a correlation in facial emotion features from the same image, both with and without occlusion. This correlation contributes to addressing the issue of facial occlusions. To this end, we propose a Information Gap based Knowledge Distillation (IGKD) to explore the latent relationship. Specifically, our approach involves feeding non-occluded and masked images into separate teacher and student networks. Due to the incomplete emotion information in the masked images, there exists an information gap between the teacher and student networks. During training, we aim to minimize this gap to enable the student network to learn this relationship. To enhance the teacher’s guidance, we introduce a joint learning strategy where the teacher conducts knowledge distillation on the student during the training of the teacher. Additionally, we introduce two novel constraints, called knowledge learn and knowledge feedback loss, to supervise and optimize both the teacher and student networks. The reported experimental results show that IGKD outperforms other algorithms on four benchmark datasets. Specifically, our IGKD achieves 87.57% on Occlusion-RAF-DB, 87.33% on Occlusion-FERPlus, 64.86% on Occlusion-AffectNet, and 73.25% on FED-RO, clearly demonstrating its effectiveness and robustness. Source code is released at: .</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"154 ","pages":"Article 105365"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624004700","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Facial Expression Recognition (FER) with occlusion presents a challenging task in computer vision because facial occlusions result in poor visual data features. Recently, the region attention technique has been introduced to address this problem by researchers, which make the model perceive occluded regions of the face and prioritize the most discriminative non-occluded regions. However, in real-world scenarios, facial images are influenced by various factors, including hair, masks and sunglasses, making it difficult to extract high-quality features from these occluded facial images. This inevitably limits the effectiveness of attention mechanisms. In this paper, we observe a correlation in facial emotion features from the same image, both with and without occlusion. This correlation contributes to addressing the issue of facial occlusions. To this end, we propose a Information Gap based Knowledge Distillation (IGKD) to explore the latent relationship. Specifically, our approach involves feeding non-occluded and masked images into separate teacher and student networks. Due to the incomplete emotion information in the masked images, there exists an information gap between the teacher and student networks. During training, we aim to minimize this gap to enable the student network to learn this relationship. To enhance the teacher’s guidance, we introduce a joint learning strategy where the teacher conducts knowledge distillation on the student during the training of the teacher. Additionally, we introduce two novel constraints, called knowledge learn and knowledge feedback loss, to supervise and optimize both the teacher and student networks. The reported experimental results show that IGKD outperforms other algorithms on four benchmark datasets. Specifically, our IGKD achieves 87.57% on Occlusion-RAF-DB, 87.33% on Occlusion-FERPlus, 64.86% on Occlusion-AffectNet, and 73.25% on FED-RO, clearly demonstrating its effectiveness and robustness. Source code is released at: .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
期刊最新文献
Pixel integration from fine to coarse for lightweight image super-resolution DALSCLIP: Domain aggregation via learning stronger domain-invariant features for CLIP EPFDNet: Camouflaged object detection with edge perception in frequency domain A fast and lightweight train image fault detection model based on convolutional neural networks FPDIoU Loss: A loss function for efficient bounding box regression of rotated object detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1