{"title":"Pressure-driven structural evolution of amorphous InN","authors":"Murat Durandurdu","doi":"10.1016/j.jnoncrysol.2024.123378","DOIUrl":null,"url":null,"abstract":"<div><div>Through constant-pressure ab initio simulations, we have uncovered high-pressure phase transformations in amorphous indium nitride for the first time. Our results reveal a distinct two-step progression under compression. Initially, a polyamorphic transition occurs, where the low-density amorphous (LDA) phase transforms into a high-density amorphous (HDA) phase. This HDA structure remains stable in some pressure range and then crystallization initiates, leading to a rocksalt configuration. Upon decompression, the HDA phase reverts to an amorphous network with a slightly higher density and coordination number than the initial LDA state.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"650 ","pages":"Article 123378"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309324005544","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Through constant-pressure ab initio simulations, we have uncovered high-pressure phase transformations in amorphous indium nitride for the first time. Our results reveal a distinct two-step progression under compression. Initially, a polyamorphic transition occurs, where the low-density amorphous (LDA) phase transforms into a high-density amorphous (HDA) phase. This HDA structure remains stable in some pressure range and then crystallization initiates, leading to a rocksalt configuration. Upon decompression, the HDA phase reverts to an amorphous network with a slightly higher density and coordination number than the initial LDA state.
期刊介绍:
The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid.
In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.