{"title":"Estimation and forecast of carbon emission market volatility based on model averaging method","authors":"Nianling Wang , Qianchao Wang , Yong Li","doi":"10.1016/j.econmod.2024.106976","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding volatility is essential for risk management and green investment decision-making in the carbon market. However, existing studies lack a unified framework for modeling and estimating carbon market volatility, and predictions are often affected by model uncertainty. Using data from EU emission allowances, we estimate parameters for multiple GARCH models via the Sequential Monte Carlo method and improve forecasting accuracy with model averaging techniques. Our results reveal that carbon market volatility is characterized by spikes, thick tails, asymmetry, and jumps. Based on Model Confidence Set test, model comparison demonstrates that averaged models consistently outperform individual models across various loss criteria. By integrating information from multiple models, the model averaging approach simplifies model selection and plays a pivotal role in supporting volatility timing strategies.</div></div>","PeriodicalId":48419,"journal":{"name":"Economic Modelling","volume":"143 ","pages":"Article 106976"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026499932400333X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding volatility is essential for risk management and green investment decision-making in the carbon market. However, existing studies lack a unified framework for modeling and estimating carbon market volatility, and predictions are often affected by model uncertainty. Using data from EU emission allowances, we estimate parameters for multiple GARCH models via the Sequential Monte Carlo method and improve forecasting accuracy with model averaging techniques. Our results reveal that carbon market volatility is characterized by spikes, thick tails, asymmetry, and jumps. Based on Model Confidence Set test, model comparison demonstrates that averaged models consistently outperform individual models across various loss criteria. By integrating information from multiple models, the model averaging approach simplifies model selection and plays a pivotal role in supporting volatility timing strategies.
期刊介绍:
Economic Modelling fills a major gap in the economics literature, providing a single source of both theoretical and applied papers on economic modelling. The journal prime objective is to provide an international review of the state-of-the-art in economic modelling. Economic Modelling publishes the complete versions of many large-scale models of industrially advanced economies which have been developed for policy analysis. Examples are the Bank of England Model and the US Federal Reserve Board Model which had hitherto been unpublished. As individual models are revised and updated, the journal publishes subsequent papers dealing with these revisions, so keeping its readers as up to date as possible.