Aizihaierjiang Yusufu , Abidan Ainiwaer , Bobo Li , Fei Li , Aizierguli Yusufu , Donghong Ji
{"title":"Analysis of user experience in low-resource languages: A case study of the Uzbek language Google Play reviews","authors":"Aizihaierjiang Yusufu , Abidan Ainiwaer , Bobo Li , Fei Li , Aizierguli Yusufu , Donghong Ji","doi":"10.1016/j.ipm.2024.104015","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding user experience is crucial for business success, yet analyzing user reviews in low-resource languages presents significant challenges due to the scarcity of annotated data. To address this gap, we conducted an in-depth analysis of 27,985 Uzbek reviews from the Google Play Store, focusing on the six key aspects of the User Experience Honeycomb model. Our study meticulously annotated these reviews, comprising a total of 43,712 sentences, to assess the sentiment polarity across these six dimensions. To benchmark this task, we propose an integrated framework that leverages pre-trained models along with GCN to capture semantic relationships, thereby enhancing the accuracy of sentiment analysis. Our approach demonstrated superior performance, achieving an absolute improvement of 0.30 in the F1 score for multi-classification tasks and 0.43 for binary classification tasks compared to existing baseline methods. These results underscore the effectiveness of our proposed framework in understanding user experience in low-resource language contexts, offering valuable insights for businesses and researchers alike.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 3","pages":"Article 104015"},"PeriodicalIF":7.4000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003741","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding user experience is crucial for business success, yet analyzing user reviews in low-resource languages presents significant challenges due to the scarcity of annotated data. To address this gap, we conducted an in-depth analysis of 27,985 Uzbek reviews from the Google Play Store, focusing on the six key aspects of the User Experience Honeycomb model. Our study meticulously annotated these reviews, comprising a total of 43,712 sentences, to assess the sentiment polarity across these six dimensions. To benchmark this task, we propose an integrated framework that leverages pre-trained models along with GCN to capture semantic relationships, thereby enhancing the accuracy of sentiment analysis. Our approach demonstrated superior performance, achieving an absolute improvement of 0.30 in the F1 score for multi-classification tasks and 0.43 for binary classification tasks compared to existing baseline methods. These results underscore the effectiveness of our proposed framework in understanding user experience in low-resource language contexts, offering valuable insights for businesses and researchers alike.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.