Achyut Shankar , Hariprasath Manoharan , Adil O. Khadidos , Alaa O. Khadidos , Shitharth Selvarajan , S.B. Goyal
{"title":"Transparency and privacy measures of biometric patterns for data processing with synthetic data using explainable artificial intelligence","authors":"Achyut Shankar , Hariprasath Manoharan , Adil O. Khadidos , Alaa O. Khadidos , Shitharth Selvarajan , S.B. Goyal","doi":"10.1016/j.imavis.2025.105429","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper the need of biometric authentication with synthetic data is analyzed for increasing the security of data in each transmission systems. Since more biometric patterns are represented the complexity of recognition changes where low security features are enabled in transmission process. Hence the process of increasing security is carried out with image biometric patterns where synthetic data is created with explainable artificial intelligence technique thereby appropriate decisions are made. Further sample data is generated at each case thereby all changing representations are minimized with increase in original image set values. Moreover the data flows at each identified biometric patterns are increased where partial decisive strategies are followed in proposed approach. Further more complete interpretabilities that are present in captured images or biometric patterns are reduced thus generated data is maximized to all end users. To verify the outcome of proposed approach four scenarios with comparative performance metrics are simulated where from the comparative analysis it is found that the proposed approach is less robust and complex at a rate of 4% and 6% respectively.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"154 ","pages":"Article 105429"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000174","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper the need of biometric authentication with synthetic data is analyzed for increasing the security of data in each transmission systems. Since more biometric patterns are represented the complexity of recognition changes where low security features are enabled in transmission process. Hence the process of increasing security is carried out with image biometric patterns where synthetic data is created with explainable artificial intelligence technique thereby appropriate decisions are made. Further sample data is generated at each case thereby all changing representations are minimized with increase in original image set values. Moreover the data flows at each identified biometric patterns are increased where partial decisive strategies are followed in proposed approach. Further more complete interpretabilities that are present in captured images or biometric patterns are reduced thus generated data is maximized to all end users. To verify the outcome of proposed approach four scenarios with comparative performance metrics are simulated where from the comparative analysis it is found that the proposed approach is less robust and complex at a rate of 4% and 6% respectively.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.