An electrochemical enzymatic biosensor based on Xylaria sp. laccase isolated from cassava waste is applied to quantify dopamine

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Process Biochemistry Pub Date : 2025-02-01 DOI:10.1016/j.procbio.2024.12.002
Mariana Pontes Vieira , Patrícia Alessandra Bersanetti , Vitor Stabile Garcia , Gerhard Ett , Andreia de Araújo Morandim-Giannetti
{"title":"An electrochemical enzymatic biosensor based on Xylaria sp. laccase isolated from cassava waste is applied to quantify dopamine","authors":"Mariana Pontes Vieira ,&nbsp;Patrícia Alessandra Bersanetti ,&nbsp;Vitor Stabile Garcia ,&nbsp;Gerhard Ett ,&nbsp;Andreia de Araújo Morandim-Giannetti","doi":"10.1016/j.procbio.2024.12.002","DOIUrl":null,"url":null,"abstract":"<div><div>Cassava waste (leaves and stems) was used to obtain endophytic fungi to assess laccase production. All the fungi (twenty-three) underwent an enzymatic extraction process to evaluate laccase production. The results revealed that six fungi from the stems and one from the leaves performed best. The fungus <em>Xylaria</em> sp. stood out for its greater productivity, and the growth parameters were optimized for this fungus (11 days, pH 6.70, and temperature 29°C). The enzyme extract enriched with laccase was then used to produce an electrochemical enzymatic biosensor immobilized in chitosan crosslinked with STMP. This biosensor was applied to quantify dopamine, with analysis conditions optimized for detecting low concentrations of the compound. The biosensor demonstrated its highest potential when operating at pH 5.60 and a temperature of 38.64°C, allowing the quantification of dopamine at concentrations from 0.17 to 492.83 µmol. L⁻¹ with a detection limit of 0.17 µmol. L⁻¹ . The biosensor demonstrated high reproducibility (0.4 % error) and stability after seven cycles.</div></div>","PeriodicalId":20811,"journal":{"name":"Process Biochemistry","volume":"149 ","pages":"Pages 237-247"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359511324003994","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cassava waste (leaves and stems) was used to obtain endophytic fungi to assess laccase production. All the fungi (twenty-three) underwent an enzymatic extraction process to evaluate laccase production. The results revealed that six fungi from the stems and one from the leaves performed best. The fungus Xylaria sp. stood out for its greater productivity, and the growth parameters were optimized for this fungus (11 days, pH 6.70, and temperature 29°C). The enzyme extract enriched with laccase was then used to produce an electrochemical enzymatic biosensor immobilized in chitosan crosslinked with STMP. This biosensor was applied to quantify dopamine, with analysis conditions optimized for detecting low concentrations of the compound. The biosensor demonstrated its highest potential when operating at pH 5.60 and a temperature of 38.64°C, allowing the quantification of dopamine at concentrations from 0.17 to 492.83 µmol. L⁻¹ with a detection limit of 0.17 µmol. L⁻¹ . The biosensor demonstrated high reproducibility (0.4 % error) and stability after seven cycles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Process Biochemistry
Process Biochemistry 生物-工程:化工
CiteScore
8.30
自引率
4.50%
发文量
374
审稿时长
53 days
期刊介绍: Process Biochemistry is an application-orientated research journal devoted to reporting advances with originality and novelty, in the science and technology of the processes involving bioactive molecules and living organisms. These processes concern the production of useful metabolites or materials, or the removal of toxic compounds using tools and methods of current biology and engineering. Its main areas of interest include novel bioprocesses and enabling technologies (such as nanobiotechnology, tissue engineering, directed evolution, metabolic engineering, systems biology, and synthetic biology) applicable in food (nutraceutical), healthcare (medical, pharmaceutical, cosmetic), energy (biofuels), environmental, and biorefinery industries and their underlying biological and engineering principles.
期刊最新文献
Editorial Board Evaluating the storage stability of a Plasmodium vivax circumsporozoite protein vaccine candidate Microbiome-metabolome interplay in low-sodium Yunnan suancai: Unraveling quality enhancement through partial NaCl replacement with KCl Enhanced PE degradation and diversity of bacterial biofilm by applying organic fertilizer inoculated with mixed degrading bacteria Degradation of Dichlorodiphenyltrichloroethane (DDT) and its main metabolites (Diphenyldichloroethylene (DDE) and Dichlorodiphenyldichloroethane (DDD) using Trichoderma species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1