Mariana Pontes Vieira , Patrícia Alessandra Bersanetti , Vitor Stabile Garcia , Gerhard Ett , Andreia de Araújo Morandim-Giannetti
{"title":"An electrochemical enzymatic biosensor based on Xylaria sp. laccase isolated from cassava waste is applied to quantify dopamine","authors":"Mariana Pontes Vieira , Patrícia Alessandra Bersanetti , Vitor Stabile Garcia , Gerhard Ett , Andreia de Araújo Morandim-Giannetti","doi":"10.1016/j.procbio.2024.12.002","DOIUrl":null,"url":null,"abstract":"<div><div>Cassava waste (leaves and stems) was used to obtain endophytic fungi to assess laccase production. All the fungi (twenty-three) underwent an enzymatic extraction process to evaluate laccase production. The results revealed that six fungi from the stems and one from the leaves performed best. The fungus <em>Xylaria</em> sp. stood out for its greater productivity, and the growth parameters were optimized for this fungus (11 days, pH 6.70, and temperature 29°C). The enzyme extract enriched with laccase was then used to produce an electrochemical enzymatic biosensor immobilized in chitosan crosslinked with STMP. This biosensor was applied to quantify dopamine, with analysis conditions optimized for detecting low concentrations of the compound. The biosensor demonstrated its highest potential when operating at pH 5.60 and a temperature of 38.64°C, allowing the quantification of dopamine at concentrations from 0.17 to 492.83 µmol. L⁻¹ with a detection limit of 0.17 µmol. L⁻¹ . The biosensor demonstrated high reproducibility (0.4 % error) and stability after seven cycles.</div></div>","PeriodicalId":20811,"journal":{"name":"Process Biochemistry","volume":"149 ","pages":"Pages 237-247"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359511324003994","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cassava waste (leaves and stems) was used to obtain endophytic fungi to assess laccase production. All the fungi (twenty-three) underwent an enzymatic extraction process to evaluate laccase production. The results revealed that six fungi from the stems and one from the leaves performed best. The fungus Xylaria sp. stood out for its greater productivity, and the growth parameters were optimized for this fungus (11 days, pH 6.70, and temperature 29°C). The enzyme extract enriched with laccase was then used to produce an electrochemical enzymatic biosensor immobilized in chitosan crosslinked with STMP. This biosensor was applied to quantify dopamine, with analysis conditions optimized for detecting low concentrations of the compound. The biosensor demonstrated its highest potential when operating at pH 5.60 and a temperature of 38.64°C, allowing the quantification of dopamine at concentrations from 0.17 to 492.83 µmol. L⁻¹ with a detection limit of 0.17 µmol. L⁻¹ . The biosensor demonstrated high reproducibility (0.4 % error) and stability after seven cycles.
期刊介绍:
Process Biochemistry is an application-orientated research journal devoted to reporting advances with originality and novelty, in the science and technology of the processes involving bioactive molecules and living organisms. These processes concern the production of useful metabolites or materials, or the removal of toxic compounds using tools and methods of current biology and engineering. Its main areas of interest include novel bioprocesses and enabling technologies (such as nanobiotechnology, tissue engineering, directed evolution, metabolic engineering, systems biology, and synthetic biology) applicable in food (nutraceutical), healthcare (medical, pharmaceutical, cosmetic), energy (biofuels), environmental, and biorefinery industries and their underlying biological and engineering principles.