Analysis of microcracking processes in microconcrete under confined compression utilising synchrotron-based ultra-high speed X-ray phase contrast imaging

IF 5.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Impact Engineering Pub Date : 2024-11-10 DOI:10.1016/j.ijimpeng.2024.105167
P. Forquin , C. Francart , M. Sapay , A. Rack , A. Cohen , D. Levi-Hevroni , M. Arrigoni , B. Lukić
{"title":"Analysis of microcracking processes in microconcrete under confined compression utilising synchrotron-based ultra-high speed X-ray phase contrast imaging","authors":"P. Forquin ,&nbsp;C. Francart ,&nbsp;M. Sapay ,&nbsp;A. Rack ,&nbsp;A. Cohen ,&nbsp;D. Levi-Hevroni ,&nbsp;M. Arrigoni ,&nbsp;B. Lukić","doi":"10.1016/j.ijimpeng.2024.105167","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, microconcrete (MC) samples were exposed to dynamic quasi-oedometric compression (QOC) tests and visualised <em>in-situ</em> by the means of MHz synchrotron X-ray phase-contrast imaging in the ESRF synchrotron in order to analyse the damage mechanisms governing the mechanical behaviour of concrete under high-strain-rate confined compression. To do so, small cylindrical samples were placed in polymeric confinement cell and dynamically compressed along their axial direction using SHPB (Split-Hopkinson Pressure Bar) set-up available in ID19 beamline in the European Synchrotron Radiation Facility (ESRF). The damage process was visualized with MHz X-ray phase-contrast imaging along with an ultra-high-speed camera operating at a recording frequency approximately 1 Mfps (million frames per second i.e., 880 ns interframe time). The axial stress and strain temporal profiles were obtained from standard Kolsky's (SHPB) data processing. In addition, data of radial stress and strain within the sample were deduced from non-linear analysis of the mechanical behaviour of the polycarbonate confining cell instrumented with a strain gauge. Finally, the onset and growth of microcracking observed from the equatorial zone of large spherical pores is correlated with deviatoric and pressure measurements showing how the pore collapse process develops during the applied mechanical loading.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"198 ","pages":"Article 105167"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24002926","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, microconcrete (MC) samples were exposed to dynamic quasi-oedometric compression (QOC) tests and visualised in-situ by the means of MHz synchrotron X-ray phase-contrast imaging in the ESRF synchrotron in order to analyse the damage mechanisms governing the mechanical behaviour of concrete under high-strain-rate confined compression. To do so, small cylindrical samples were placed in polymeric confinement cell and dynamically compressed along their axial direction using SHPB (Split-Hopkinson Pressure Bar) set-up available in ID19 beamline in the European Synchrotron Radiation Facility (ESRF). The damage process was visualized with MHz X-ray phase-contrast imaging along with an ultra-high-speed camera operating at a recording frequency approximately 1 Mfps (million frames per second i.e., 880 ns interframe time). The axial stress and strain temporal profiles were obtained from standard Kolsky's (SHPB) data processing. In addition, data of radial stress and strain within the sample were deduced from non-linear analysis of the mechanical behaviour of the polycarbonate confining cell instrumented with a strain gauge. Finally, the onset and growth of microcracking observed from the equatorial zone of large spherical pores is correlated with deviatoric and pressure measurements showing how the pore collapse process develops during the applied mechanical loading.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Impact Engineering
International Journal of Impact Engineering 工程技术-工程:机械
CiteScore
8.70
自引率
13.70%
发文量
241
审稿时长
52 days
期刊介绍: The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them: -Behaviour and failure of structures and materials under impact and blast loading -Systems for protection and absorption of impact and blast loading -Terminal ballistics -Dynamic behaviour and failure of materials including plasticity and fracture -Stress waves -Structural crashworthiness -High-rate mechanical and forming processes -Impact, blast and high-rate loading/measurement techniques and their applications
期刊最新文献
Enhancing energy absorption of star-shaped honeycombs by utilizing negative Poisson's ratio effect under high-velocity impact Unified formula for fragment velocity of polygonal charges Quasi-static and dynamic responses of bio-inspired auxetic structures High-velocity projectile launcher of LIPIT: Utilizing stress wave driven by laser-induced glass breakdown Impact protection mechanism and failure prediction of modular hierarchical honeycomb system with self-locking effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1