Ziwei Xia , Minxiang Su , Shuai Li , Jiaxin Shi , Wei Yu
{"title":"The influence of air temperature on heat transfer coefficient under forced air-cooling conditions","authors":"Ziwei Xia , Minxiang Su , Shuai Li , Jiaxin Shi , Wei Yu","doi":"10.1016/j.ijheatfluidflow.2024.109741","DOIUrl":null,"url":null,"abstract":"<div><div>Employing a combined approach of offline experiments and numerical simulations, this study investigates the temperature distribution of steel rods under various air temperatures during forced air-cooling to elucidate the cooling mechanisms of steel rods. At a wind speed of 22 m/s, an increase in air temperature significantly reduces the convective heat transfer coefficient. Continuous airflow creates regions of low Reynolds numbers at the top of the rod and high Reynolds numbers along its sides, significantly enhancing the side convective heat transfer coefficient over the top. Empirical formulas for heat transfer coefficients at different rod positions were derived from experimental and simulation results and validated experimentally with a calculation error of less than 4 %.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109741"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24004661","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Employing a combined approach of offline experiments and numerical simulations, this study investigates the temperature distribution of steel rods under various air temperatures during forced air-cooling to elucidate the cooling mechanisms of steel rods. At a wind speed of 22 m/s, an increase in air temperature significantly reduces the convective heat transfer coefficient. Continuous airflow creates regions of low Reynolds numbers at the top of the rod and high Reynolds numbers along its sides, significantly enhancing the side convective heat transfer coefficient over the top. Empirical formulas for heat transfer coefficients at different rod positions were derived from experimental and simulation results and validated experimentally with a calculation error of less than 4 %.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.