{"title":"Experimental investigation of droplet moving on a horizontal metal plate driven by cold airflow","authors":"Shuoshuo Wang, Shinan Chang, Weidong Yu, Ke Wu","doi":"10.1016/j.ijheatfluidflow.2025.109747","DOIUrl":null,"url":null,"abstract":"<div><div>The deformation and movement of droplets are a fundamental phenomenon in nature and industry. The droplet under shear airflow is involved in many aspects, and research on the droplet under different experimental conditions, such as airflow temperature, is still lacking. A series of experiments on droplet motion under different conditions were carried out. The speed and temperature of airflow ranged from 17.0 m/s to 35.0 m/s and −17.0 °C to 20.0 °C, respectively. The droplet volume varied from 5.0 to 40.0 μL. The droplet properties did not change under the cold airflow in the test time, which indicated that it did not freeze and remained liquid for a period of time. During the whole droplet motion in the view, no solidification is observed. The characteristic parameters including the position of the droplet centre, the wetting length, the droplet height and the difference between the cosines of the front contact angle and the rear contact angle (<em>cah</em>) of droplet were obtained by image post-processing. The maximum length ratio and the maximum height ratio of droplet deformation were discussed. The morphology of a droplet during its motion was classified into three regimes according to the droplet Reynolds number, S (sliding slightly), SS (sliding and moving), and SRS (sliding and rivulet formation, and separation). A map of the regimes of droplet motion under different conditions was obtained. It is found that when the Re<sub>d</sub> is in a range from 0 to 25, the droplet motion is Regime I (S). With the Re<sub>d</sub> increasing, the different regimes appeared. The order in which they appear is S, SS, and SRS. This study provides experimental reference data for the study of the droplet motion in different temperatures and shear of airflow.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109747"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X25000050","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The deformation and movement of droplets are a fundamental phenomenon in nature and industry. The droplet under shear airflow is involved in many aspects, and research on the droplet under different experimental conditions, such as airflow temperature, is still lacking. A series of experiments on droplet motion under different conditions were carried out. The speed and temperature of airflow ranged from 17.0 m/s to 35.0 m/s and −17.0 °C to 20.0 °C, respectively. The droplet volume varied from 5.0 to 40.0 μL. The droplet properties did not change under the cold airflow in the test time, which indicated that it did not freeze and remained liquid for a period of time. During the whole droplet motion in the view, no solidification is observed. The characteristic parameters including the position of the droplet centre, the wetting length, the droplet height and the difference between the cosines of the front contact angle and the rear contact angle (cah) of droplet were obtained by image post-processing. The maximum length ratio and the maximum height ratio of droplet deformation were discussed. The morphology of a droplet during its motion was classified into three regimes according to the droplet Reynolds number, S (sliding slightly), SS (sliding and moving), and SRS (sliding and rivulet formation, and separation). A map of the regimes of droplet motion under different conditions was obtained. It is found that when the Red is in a range from 0 to 25, the droplet motion is Regime I (S). With the Red increasing, the different regimes appeared. The order in which they appear is S, SS, and SRS. This study provides experimental reference data for the study of the droplet motion in different temperatures and shear of airflow.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.