Performance and mechanism of the hydrodynamic noise reduction for biomimetic trailing-edge serrations of a submarine

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL Journal of Fluids and Structures Pub Date : 2024-12-24 DOI:10.1016/j.jfluidstructs.2024.104256
Zhihao Ma , Peng Li , Hang Guo , Kuai Liao , Yiren Yang
{"title":"Performance and mechanism of the hydrodynamic noise reduction for biomimetic trailing-edge serrations of a submarine","authors":"Zhihao Ma ,&nbsp;Peng Li ,&nbsp;Hang Guo ,&nbsp;Kuai Liao ,&nbsp;Yiren Yang","doi":"10.1016/j.jfluidstructs.2024.104256","DOIUrl":null,"url":null,"abstract":"<div><div>As submarine speed increases, the hydrodynamic noise generated by the sail of a submarine becomes more pronounced. Inspired by the noise reduction capabilities demonstrated by the serration on the owl’s wing trailing edge, this paper proposes the serration noise reduction structure applied to the sail trailing edge of the submarine. The large eddy simulation and the Ffowcs Williams–Hawkings equation are employed to examine the impact of serration on flow and noise characteristics at the sail. The quadrupole noise source is captured by the permeable surface combined with the formulation Q1A. The physical mechanisms underlying trailing edge serration, which reduce flow noise, are revealed. The accuracy of the hydrodynamic and acoustic calculation methods is verified by experimental data. This study demonstrates that the serration exerts the double effect on the flow noise, which is a combination of dipole and quadrupole noise. Total noise is reduced by up to 4.32 dB. The impact of serration on dipole noise is the combined behavior of multiple physical mechanisms. First, the serration induces flow separation at the trailing edge and block water convergence at the serration peak, thereby diminishing turbulent fluctuations within the boundary layer; Secondly, it causes the decoherence effect on the vertical pressure fluctuations at the trailing edge, resulting in destructive interference in the dipole noise source. The serrations extend the continuous Stream vortex, delaying its evolution into the Hairpin vortex and subsequent fragmentation into small-scale vortex. This distortion of the spatial vortex structure intensifies the magnitude of the Lamb vector <span><math><mrow><mo>|</mo><mi>ℒ</mi><mo>|</mo></mrow></math></span> and Lighthill stress, thereby enhancing the energy of quadrupole noise source. Flow noise reduction is achieved by applying sail trailing edge serration in a submarine, but the submarine hull diminishes its noise reduction performance. The reason involves turbulent interference in the boundary layer of the hull altering the incoming flow conditions at the trailing edge serration, which increases the unsteady pressure fluctuations at the serration valley, thereby amplifying the intensity of the dipole noise source.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"133 ","pages":"Article 104256"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001907","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As submarine speed increases, the hydrodynamic noise generated by the sail of a submarine becomes more pronounced. Inspired by the noise reduction capabilities demonstrated by the serration on the owl’s wing trailing edge, this paper proposes the serration noise reduction structure applied to the sail trailing edge of the submarine. The large eddy simulation and the Ffowcs Williams–Hawkings equation are employed to examine the impact of serration on flow and noise characteristics at the sail. The quadrupole noise source is captured by the permeable surface combined with the formulation Q1A. The physical mechanisms underlying trailing edge serration, which reduce flow noise, are revealed. The accuracy of the hydrodynamic and acoustic calculation methods is verified by experimental data. This study demonstrates that the serration exerts the double effect on the flow noise, which is a combination of dipole and quadrupole noise. Total noise is reduced by up to 4.32 dB. The impact of serration on dipole noise is the combined behavior of multiple physical mechanisms. First, the serration induces flow separation at the trailing edge and block water convergence at the serration peak, thereby diminishing turbulent fluctuations within the boundary layer; Secondly, it causes the decoherence effect on the vertical pressure fluctuations at the trailing edge, resulting in destructive interference in the dipole noise source. The serrations extend the continuous Stream vortex, delaying its evolution into the Hairpin vortex and subsequent fragmentation into small-scale vortex. This distortion of the spatial vortex structure intensifies the magnitude of the Lamb vector || and Lighthill stress, thereby enhancing the energy of quadrupole noise source. Flow noise reduction is achieved by applying sail trailing edge serration in a submarine, but the submarine hull diminishes its noise reduction performance. The reason involves turbulent interference in the boundary layer of the hull altering the incoming flow conditions at the trailing edge serration, which increases the unsteady pressure fluctuations at the serration valley, thereby amplifying the intensity of the dipole noise source.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
期刊最新文献
Scattering of oblique incident waves by a rigid floating structure in the presence of two surface-piercing thick porous breakwaters: Pattern of reflection, dissipation and wave forces Visualization and measurement of shock movement during transonic limit-cycle oscillation Data assimilation for turbulence-merged channel branches with the simultaneous enhancement of hydrodynamics and aeroacoustics Editorial Board Experimental investigation in nonlinear aerodynamic characteristics of a double-layer truss girder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1