Urban attractiveness according to ChatGPT: Contrasting AI and human insights

IF 7.1 1区 地球科学 Q1 ENVIRONMENTAL STUDIES Computers Environment and Urban Systems Pub Date : 2024-12-24 DOI:10.1016/j.compenvurbsys.2024.102243
Milad Malekzadeh, Elias Willberg, Jussi Torkko, Tuuli Toivonen
{"title":"Urban attractiveness according to ChatGPT: Contrasting AI and human insights","authors":"Milad Malekzadeh,&nbsp;Elias Willberg,&nbsp;Jussi Torkko,&nbsp;Tuuli Toivonen","doi":"10.1016/j.compenvurbsys.2024.102243","DOIUrl":null,"url":null,"abstract":"<div><div>The attractiveness of urban environments significantly impacts residents' satisfaction with their living spaces and their overall mood, which in turn, affects their health and well-being. Given the resource-intensive nature of gathering evaluations on urban attractiveness through surveys or inquiries from residents, there is a constant quest for automated solutions to streamline this process and support spatial planning. In this study, we applied an off-the-shelf AI model to automate the analysis of urban attractiveness, using over 1800 Google Street View images of Helsinki, Finland. By incorporating the GPT-4 model, we assessed these images through three criteria-based prompts. Simultaneously, 24 participants, categorised into residents and non-residents, were asked to rate the images. To gain insights into the non-transparent decision-making processes of GPT-4, we employed semantic segmentation to explore how the model uses different image features. Our results demonstrated a strong alignment between GPT-4 and participant ratings, although geographic disparities were noted. Specifically, GPT-4 showed a preference for suburban areas with significant greenery, contrasting with participants who found these areas less attractive. Conversely, in the city centre and densely populated urban regions of Helsinki, GPT-4 assigned lower attractiveness scores than participant ratings. The semantic segmentation analysis revealed that GPT-4's ratings were primarily influenced by physical features like vegetation, buildings, and sidewalk. While there was general agreement between AI and human assessments across various locations, GPT-4 struggled to incorporate contextual nuances into its ratings, unlike participants, who considered both context and features of the urban environment. The study suggests that leveraging AI models like GPT-4 allows spatial planners to gather insights into the attractiveness of different areas efficiently. However, caution is necessary, while we used an off-the-shelf model, it is crucial to develop models specifically trained to understand the local context. Although AI models provide valuable insights, human perspectives are essential for a comprehensive understanding of urban attractiveness.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"117 ","pages":"Article 102243"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524001728","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

The attractiveness of urban environments significantly impacts residents' satisfaction with their living spaces and their overall mood, which in turn, affects their health and well-being. Given the resource-intensive nature of gathering evaluations on urban attractiveness through surveys or inquiries from residents, there is a constant quest for automated solutions to streamline this process and support spatial planning. In this study, we applied an off-the-shelf AI model to automate the analysis of urban attractiveness, using over 1800 Google Street View images of Helsinki, Finland. By incorporating the GPT-4 model, we assessed these images through three criteria-based prompts. Simultaneously, 24 participants, categorised into residents and non-residents, were asked to rate the images. To gain insights into the non-transparent decision-making processes of GPT-4, we employed semantic segmentation to explore how the model uses different image features. Our results demonstrated a strong alignment between GPT-4 and participant ratings, although geographic disparities were noted. Specifically, GPT-4 showed a preference for suburban areas with significant greenery, contrasting with participants who found these areas less attractive. Conversely, in the city centre and densely populated urban regions of Helsinki, GPT-4 assigned lower attractiveness scores than participant ratings. The semantic segmentation analysis revealed that GPT-4's ratings were primarily influenced by physical features like vegetation, buildings, and sidewalk. While there was general agreement between AI and human assessments across various locations, GPT-4 struggled to incorporate contextual nuances into its ratings, unlike participants, who considered both context and features of the urban environment. The study suggests that leveraging AI models like GPT-4 allows spatial planners to gather insights into the attractiveness of different areas efficiently. However, caution is necessary, while we used an off-the-shelf model, it is crucial to develop models specifically trained to understand the local context. Although AI models provide valuable insights, human perspectives are essential for a comprehensive understanding of urban attractiveness.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.30
自引率
7.40%
发文量
111
审稿时长
32 days
期刊介绍: Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.
期刊最新文献
GeoAvatar: A big mobile phone positioning data-driven method for individualized pseudo personal mobility data generation Modelling active travel accessibility at the micro-scale using multi-source built environment data Editorial Board A planning support framework to enable smart mobility: Integrating multi-objective spatial optimization and GIS to enhance commuting efficiency From theory to deep learning: Understanding the impact of geographic context factors on traffic violations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1