Akash Tripathi , Swati Das , Makarand M. Ghangrekar , Brajesh Kumar Dubey
{"title":"Improving algae-assisted bioelectrochemical system with the integration of advanced cell disruption process for lipid recovery: A mini-review","authors":"Akash Tripathi , Swati Das , Makarand M. Ghangrekar , Brajesh Kumar Dubey","doi":"10.1016/j.biteb.2025.102041","DOIUrl":null,"url":null,"abstract":"<div><div>The production of sustainable biofuel from algae is hindered by energy-intensive conventional processes that provides low-quality yield at high cost, rendering them impractical for fulfilling global energy demands. In this regard, algal-microbial fuel cells (A-MFCs) offer a promising alternative by simultaneously recovering bioenergy while treating wastewater, and sequestering CO<sub>2</sub>. However, lipid productivity in A-MFCs remains suboptimal due to challenges in nutrient management, low yields, operational instability, and inefficient reactor designs. Therefore, this review underscores the potential of cultivating lipid-rich algae in A-MFCs, coupled with advanced cell disruption and extraction technologies, to enhance biomass and bioenergy production. Chemical processes like Fenton oxidation, electro and photo-oxidation, facilitate in-situ cell disruption. Whereas, the biological like enzymatic process also provides an amicable condition for solvent-free algal lipid extraction. Hence, integrating A-MFCs with biorefinery frameworks can promote circular bioeconomy and direct lipid recovery, necessitating further research to address operational challenges and optimise sustainable biofuel production.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"29 ","pages":"Article 102041"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X25000234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The production of sustainable biofuel from algae is hindered by energy-intensive conventional processes that provides low-quality yield at high cost, rendering them impractical for fulfilling global energy demands. In this regard, algal-microbial fuel cells (A-MFCs) offer a promising alternative by simultaneously recovering bioenergy while treating wastewater, and sequestering CO2. However, lipid productivity in A-MFCs remains suboptimal due to challenges in nutrient management, low yields, operational instability, and inefficient reactor designs. Therefore, this review underscores the potential of cultivating lipid-rich algae in A-MFCs, coupled with advanced cell disruption and extraction technologies, to enhance biomass and bioenergy production. Chemical processes like Fenton oxidation, electro and photo-oxidation, facilitate in-situ cell disruption. Whereas, the biological like enzymatic process also provides an amicable condition for solvent-free algal lipid extraction. Hence, integrating A-MFCs with biorefinery frameworks can promote circular bioeconomy and direct lipid recovery, necessitating further research to address operational challenges and optimise sustainable biofuel production.