Modeling the hydraulic roughness of a movable flatbed in a sand channel while considering the effects of water temperature

IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES International Journal of Sediment Research Pub Date : 2025-02-01 DOI:10.1016/j.ijsrc.2024.11.004
Junzheng Liu , Jinliang Zhang , Zhe Huang , Haijue Xu , Yuchuan Bai , Gang Wang
{"title":"Modeling the hydraulic roughness of a movable flatbed in a sand channel while considering the effects of water temperature","authors":"Junzheng Liu ,&nbsp;Jinliang Zhang ,&nbsp;Zhe Huang ,&nbsp;Haijue Xu ,&nbsp;Yuchuan Bai ,&nbsp;Gang Wang","doi":"10.1016/j.ijsrc.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>The prediction of the flow resistance (usually quantified as the hydraulic roughness) of a movable flatbed is a key issue affecting the calculation accuracy of flood levels in river training projects. Bedload motion on a movable flatbed causes additional energy loss and increases hydraulic roughness. Several theoretical and empirical predictors for characterizing this phenomenon have been proposed, but the accuracy and physical basis of these models should be improved. In this study, the total energy dissipation rate is separated into two components: the energy dissipation rate due to grain drag and the additional energy dissipation rate due to bedload motion. Following the energy dissipation rate balance equation, a new predictor was proposed for movable flatbed flows. The water temperature was empirically coupled with the fluid viscosity and its associated physical variables. A new empirical relation between two dimensionless flow‒sediment combination variables was established to demarcate the various bedform transitions induced by the water temperature. The new predictor was compared with other predictors, and the prediction results were compared to the measured data. The error metric showed that the new predictor provided the highest accuracy, with ∼88.5% of the 826 data points falling within the ±30% error band. The new predictor suggested that the additional drag is nonlinearly proportional to the grain drag, and the scale factor between these two parameters is related to five flow‒sediment variables. In addition, the ability of the new predictor to quantify water temperature effects was examined. The predicted resistance exhibited three change modes with increasing water temperature, and the results suitably agreed with the measurements. The effect of the water temperature on the resistance of a movable flatbed is jointly controlled by the suspension number and roughness Reynolds number. This study provides an effective predictor that can be used by decision makers for modeling the hydraulic roughness of a movable flatbed.</div></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"40 1","pages":"Pages 31-44"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sediment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001627924001276","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The prediction of the flow resistance (usually quantified as the hydraulic roughness) of a movable flatbed is a key issue affecting the calculation accuracy of flood levels in river training projects. Bedload motion on a movable flatbed causes additional energy loss and increases hydraulic roughness. Several theoretical and empirical predictors for characterizing this phenomenon have been proposed, but the accuracy and physical basis of these models should be improved. In this study, the total energy dissipation rate is separated into two components: the energy dissipation rate due to grain drag and the additional energy dissipation rate due to bedload motion. Following the energy dissipation rate balance equation, a new predictor was proposed for movable flatbed flows. The water temperature was empirically coupled with the fluid viscosity and its associated physical variables. A new empirical relation between two dimensionless flow‒sediment combination variables was established to demarcate the various bedform transitions induced by the water temperature. The new predictor was compared with other predictors, and the prediction results were compared to the measured data. The error metric showed that the new predictor provided the highest accuracy, with ∼88.5% of the 826 data points falling within the ±30% error band. The new predictor suggested that the additional drag is nonlinearly proportional to the grain drag, and the scale factor between these two parameters is related to five flow‒sediment variables. In addition, the ability of the new predictor to quantify water temperature effects was examined. The predicted resistance exhibited three change modes with increasing water temperature, and the results suitably agreed with the measurements. The effect of the water temperature on the resistance of a movable flatbed is jointly controlled by the suspension number and roughness Reynolds number. This study provides an effective predictor that can be used by decision makers for modeling the hydraulic roughness of a movable flatbed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Sediment Research
International Journal of Sediment Research 环境科学-环境科学
CiteScore
6.90
自引率
5.60%
发文量
88
审稿时长
74 days
期刊介绍: International Journal of Sediment Research, the Official Journal of The International Research and Training Center on Erosion and Sedimentation and The World Association for Sedimentation and Erosion Research, publishes scientific and technical papers on all aspects of erosion and sedimentation interpreted in its widest sense. The subject matter is to include not only the mechanics of sediment transport and fluvial processes, but also what is related to geography, geomorphology, soil erosion, watershed management, sedimentology, environmental and ecological impacts of sedimentation, social and economical effects of sedimentation and its assessment, etc. Special attention is paid to engineering problems related to sedimentation and erosion.
期刊最新文献
Simulation of sand and mud transport processes in currents and waves by time-dependent 2DV model Impacts of grade control structures on riverbed degradation Morphological properties of two-dimensional and three-dimensional bedforms in open channel flow: A flume experiments study Modeling the hydraulic roughness of a movable flatbed in a sand channel while considering the effects of water temperature Source distribution, ecological risks, and controlling factors of heavy metals in river sediments: Receptor model-based study in a transboundary river basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1